
 

 

 

 



power generation need [13]. As for battery reserves, massive-scale
energy storage is still difficult to realize for the sake of production
costs and storage capacity restrictions [14]. Concerning the lack of
information on the electricity consumption behavior of residential
users, it's also hard to achieve demand response technologies [15].
As a low-cost strategy, high-fidelity PV power forecasting is
extensively applied to mitigate the intermittency of PV power
generation. Meanwhile, it can also provide effective support for
other solutions [16].

Solar power forecasts with different time scales have been
developed to meet various demands for the power industry. As two

of themost popular forecasting fields in the last few decades, short-
term PV power forecasting is widely utilized in the formulation of
day-ahead generation plans [17], while ultra-short-term PV power
forecasting is capable of offering guidance to real-time dispatching
of the grid [18,19]. For ultra-short-term PV power forecasting, cloud
cover is the main factor that affects the amount of irradiance
reaching the ground surface, thus resulting in a power volatility
effect. To be aware of the effect of cloud clusters in the atmosphere,
local-sensing and remote-sensing devices are applied to track
clouds, offering support to PV power forecasts [20,21]. For the first
type, the ground-based sky imaging system is applied in the local-
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sensing-based research field, which can capture local clouds over
the installed plant within sub-kilometers in real-time. Conse-
quently, sky images are widely used for cloud characteristic
extraction in minute timescale irradiance/PV forecasting, and in
most cases focus on a single PV power plant due to the limits of its
observation range. To improve the performance of irradiance/PV
power forecasting, tracking cloud motion with high accuracy and
robustness is a ground work to be done. In Ref. [22], a cloud motion
vector calculation method-based image phase shift invariance
(IPSI) was proposed to reduce outliers which generated by Fourier
phase correlation theory (FPCT) method. Based on the work
mentioned in Ref. [23], another two transforms such as wavelet
transform and convolution transform were added to further
decrease error rate of calculated cloud motion vector. After
accomplishing cloud motion vector calculation, irradiance/PV po-
wer forecasts can be achieved. In Ref. [24], with the application of
sky images, the accuracy of direct normal irradiance (DNI) forecasts
are evaluated by various means of cloud transmittance and velocity
calculation. In Ref. [25], digital image levels are transformed into
irradiances, then maximum cross-correlation calculation is applied
to achieve future predictions. Forecasting beam irradiance, diffuse
irradiance, and global irradiance are evaluated and tested by using
different statistical parameters, which shows a better performance
of this proposed method. For the latter one, remote-sensing tech-
nique-based satellite images usually provide forecasts ranging from
half an hour to 6 h, and offers a wider view of observation.
Therefore, it is conducive to achieve forecasts in the environment of
growing number of PV power plant clusters [26]. As depicted in
Ref. [27], hourly solar irradiance time series was able to be pre-
dicted by using satellite image analysis and a hybrid exponential
smoothing state space (ESSS) model with artificial neural networks
(ANN). The effectiveness of proposed method is shown better than
those of other traditional forecasting models. In Ref. [28], with the
application of physical method, solar radiation was estimated on
the basis of the relation between clear-sky index and cloud cover
index. The physical method required no ground data and was more
suitable for the cases where the distances between PV plants were
quite large.

At present, in the field of solar irradiance/PV power forecasting,
major studies only focus training samples on historical data of the
target forecasting plant. Only a few kinds of research are exploring
spatial similarity and temporal correlation to achieve irradiance/PV
power forecasting. Usually, when multiple PV plants are located in
different regions with the same geographical locale, due to the
short distance between every two plants, from a few to a couple of
kilometers, it is common to observe that when there is an instan-
taneous large drop occurring in one PV plant output, after a while,
another drop with the same variable shape will take place in
another plant. Based on this phenomenon, forecasting on target
plant with data from neighboring plants is practical. Several works
of literature have investigated spatio-temporal correlation among
multiple plants [29e31]. As depicted in Ref. [32], a framework is
established to quantify spatial similarity and temporal correlation,
then PV output forecasting in a certain geographical region has
been achieved. In Ref. [33], intra-hour cloud locations and irradi-
ance are forecasted for a network of six pyranometer ground plants
in a microgrid at the University of California, San Diego (UCSD).
Another multi-scale spatio-temporal PV power forecasting model
by using autoregressive with exogenous input is established in
Ref. [34], which delivers better accuracy than conventional
temporal-only autoregressive models. As for [35], a multi-time
scale forecast of PV generation was introduced based on spatio-
temporal correlations among neighboring solar sites. The perfor-
mance of the proposed method was compared with the conven-
tional persistence model, and the improved forecast quality was

studied by using historical data acquired from PV sites located in
California and Colorado.

1.2. Motivation and contribution

High-fidelity PV power forecast in ultra-short-term time scale
can provide guidance and detailed correction to grid dispatching
and scheduling plan [36]. Meanwhile, it is conducive to reduce the
charge frequency of the storage battery, thus prolong its service
time. Therefore, related researches on PV power forecasting are
essential to carry out. To sum up, in the field of ultra-short-term
forecasts, satellite image-based methods address the problem of
tracking cloud motions in a large region, thus promote forecasting
accuracy after taking cloud characteristic input into consideration.
For neighboring plant data-based methods, they achieve forecasts
in another way by utilizing spatio-temporal information among
regional plants. However, in the present work, primary spatio-
temporal-based methods mainly focus on historical text data,
such as power, irradiance, humidity, wind speed, wind direction,
and other meteorological factors to train forecast models. Until
now, there is still less or even no relevant literature presenting
ultra-short-term PV power forecasting utilizing combining spatio-
temporal correlation with satellite image information captured
above the neighboring plant.

To fill this forecast gap, in this paper, we propose a method that
integrates satellite image, PV power data collected from the
neighboring plant, with the target plant's historical data, and other
meteorological factors, to achieve PV power forecasting with a time
horizon varying from 15 min to 4 h. First, the neighboring plant
which has the strongest correlation with the target plant should be
determined by calculating the maximumvalue of the sample cross-
correlation function (SCCF). If the value of SCCF is over the
threshold ε and the cloud motion direction is from the neighboring
plant to the target plant, then the neighboring plant can be applied,
as well as the value of time lag t corresponding to the maximum
value of SCCF can be utilized with credibility. If not, a traditional
method which only considers the data of the target plant is
employed to achieve the forecast.

After ensuring the neighboring plant, neighboring cloud char-
acteristic indexes are extracted as additional inputs with other
general meteorological and power inputs to train the foresing
models by using Support Vector Machines (SVM) and Gradient
Boosting Decision Trees (GBDT), to verify the effectiveness of the
proposed technical route. However, the method proposed with the
spatio-temporal correlation between two plants can only achieve
the forecasting within a time horizon as short as t min. For other
forecasting range between tþ 15 min and 4 h, a submethod should
be applied. Based on historical cloud motion calculation between
consecutive satellite image pairs, cloud motion above the neigh-
boring plant in the future can be obtained by using linear extrap-
olation, then the regions which will cover the neighboring plant
enable to be acquired. After cloud characteristic extraction and
other inputs calculation, it is feasible to achieve the output fore-
casting of the target plant for the remaining timewhich themethod
with spatio-temporal correlation can not achieve. The comparisons
with various benchmark methods show the performance of the
proposed method is better over ultra-short-term PV power
forecasts.

The main contributions of this paper include:

(1) Spatio-temporal correlation between plants in a PV power
plant cluster is analyzed. Then the selection of an appropriate
neighboring plant is introduced, which can provide prior
knowledge of the power fluctuation in the target power
plant.

F. Wang, X. Lu, S. Mei et al. Energy 238 (2022) 121946

3



(2) Verify the mapping relationship between cloud characteris-
tics of the neighboring plant and solar PV power output of
the target plant theoretically based on satellite remote
sensing data.

(3) An ultra-short-term solar PV power forecasting method
based on power data of neighboring plants and cloud infor-
mation from satellite images is proposed, which can improve
the forecasting accuracy.

(4) Actual data from two target plants are applied to evaluate the
effectiveness of the proposed method.

2. Methodology

2.1. Spatio-temporal correlation between two adjacent PV plants

In a certain region, due to the similar geographical locale, PV
outputs of two adjacent PV plants located at different places may
exhibit a similar time-varying pattern, which can be defined as
spatial similarity. In order to explore the correlations among several
PV power output time series produced at different plants, the
temporal correlation which is seemed as the pairwise similarity on
spatial dimension needs to be evaluated. In other words, for the
sake of cloud motion, there will be a lagging or leading effect be-
tween two PV output time series corresponding to two adjacent
plants, which is defined as temporal correlation. To facilitate un-
derstanding, PV power output data collected from plant A and plant
B at the same period of time are selected and presented in Fig. 1,
with a distance of up to 19.6 km.

Since the variable-size surface area of the PV module has an
impact on power output through influencing the amount of
reaching irradiance, raw PV power data should be pre-processed by
(1):

PðiÞ¼ pðiÞ=Pclear (1)

where P, p, Pclear mean pre-processed data, real data, and power in
clear sky condition at each moment for data-processed power
plant, respectively. For two PV output time series collected from
two PV plants shown in Fig. 1, we can observe that the two plants
have similar time-varying patterns. The highly correlated events
enable to facilitate determination of a relationship between the
temporal difference in PV power outputs corresponding to the two
plants and their geographical distance. As shown in Fig. 1, it can be
seen that the changes in PV power output time series of plant B
consistently lag that of plant A with a time interval of around
50 min, thus present spatio-temporal correlation in a visual way.

From the analysis mentioned above, it is not difficult to realize

the significance that the data in plant A are beneficial to the PV
power output forecast of plant B, especially for forecast time hori-
zon within 1 h. Therefore, the calculation of time lag t is necessary.

In this article, SCCF is taken into consideration to describe the
correlation degree between two PV power output time series Xt
and Yt [37].

rxy¼ CxyðtiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cxxð0ÞCyyð0Þp ; ti ¼ �k;�kþ 1;/;0;1;2;/; k (2)

CxyðtiÞ¼1
n

Xn�ti

t¼1

ðXt�XMÞðYðtþ tiÞ� YMÞ; ti

¼ �k;�kþ 1;/;0;1;2;/k (3)

In (2)-(3), Cxxð0Þ;Cyyð0Þ mean when ti ¼ 0, the value of cor-
relation degree CxyðtiÞ in the case of x ¼ y or y ¼ x; n is the length
of Xt and Yt; XM;YM are mean values of Xt and Yt respectively; and
ti represents time lag which set as a certain integer. After calcu-
lating CxyðtiÞ with various ti from -k to k, the maximum value
which shows the strongest correlation for Xt and Yt can be seemed
as final time lag t. This would be a crucial factor that the two time
series are necessary to obtain for the model training phase. How-
ever, a considerable quantity of paired plants has no significant
correlation shown in the data series in practice. Therefore, it is
necessary to set a threshold to examine whether the maximum
value of time lag can be accepted, so as to verify whether the novel
method proposed in this paper is appropriate for the predicted time
horizon aiming at paired plants.

The figure of SCCF value in PV power time series indicates the
time lag in which the correlation is strongest, and is constructed by
a great number of time lag values which can describe the trend of
the cross-correlation coefficient. In this way, it would be desirable
that the correlation check can bring about the selection of neigh-
boring plants having different distances. An appropriate neigh-
boring plant can be chosen, which has the strongest correlation
with the target plant, by extracting the maximum SCCF value from
various pairs of PV power datameasuring plants at the same region.
The calculation of SCCF values for target plant A and neighboring
plant B is shown in Fig. 2 (a). Likewise, the SCCF for target plant A
and neighboring plant C is shown in Fig. 2 (b). The maximum SCCF
values are marked by black points. From this figure, we can observe
that the trend and maximum value of SCCF in Fig. 2 (a) are both
better than Fig. 2 (b), which is decided on the distance from the
target plant and cloud condition over the plants. In general, the
higher the SCCF values between two plants, the better correlation is
achieved. Also, in order to obtain the optimal performance of power
forecasting, when the maximum SCCF values of two pairs of plants
are nearly the same, the neighboring plant must be the one with a
higher time lag value that contains more power information.

After selecting the neighboring plant which has the best cor-
relation with the target plant, historical data of the neighboring
plant can be applied to the target plant's power forecasting. With
the calculated time lag t, the technical route of traditional solar PV
power forecasting by using power data acquired from target and
neighboring plants can be listed as follows (see Fig. 3).

1) Select a neighboring plant that has the strongest correlation
with the target plant by calculating SCCF.

2) Extract time lag value t.
3) Add power data of neighboring plant at the current time with

historical power data of target plant as model inputs.
4) Preliminary predicted value of target plant can be acquired by

transporting these inputs into the forecasting model.
5) Prediction rectification on preliminary predicted value.

Fig. 1. Spatio-temporal correlation of PV power output time series between plant A
and plant B with 19.6 km of distance.
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6) PV power forecasting for the target plant at the target time (t
min later) can be achieved.

2.2. Cloud characteristic extraction

Except for spatio-temporal correlation excavated in PV power
output time series, cloud information should also be considered,
because the fluctuation of PV power is subject to the rapid change
of cloud cover proportion. In Fig. 4, two satellite images are
captured from plant A at time P and time Q. After time-varying
pattern matching, time P0 and time Q0 can be acquired with a
time lag t, corresponding to time P and time Q. It is to be noted that
plant A is covered with a few clouds in the former image, whereas,
for the latter image, plant A is surrounded by thick white clouds. In
other words, the PV power output value at time P is higher than the
value at time Q, which is also appropriate for the case at time P0 and
time Q’. Therefore, two simple conclusions can be drawn: i) for the
plant-blocked area, PV power output in the thin cloud or blue sky

environment is much higher than that in a thick white cloud
environment; ii) PV power output forecast aiming at target plant B
by using satellite image information around neighboring plant A is
workable theoretically.

To achieve cloud characteristic extraction, in this paper, we
define gray-related features of the satellite image, which are
affected by irradiance, cloud thickness, steam dispersity, time, etc.
as cloud quality (CQ). This type of index is capable of analyzing the
shielding degree of cloud cluster to PV power output and is mainly
influenced by cloud gray information. In this part, we extract gray
values for each cloud pixel in a certain region, then add and average
gray values to get the CQ index GCQ .

GCQ ¼

PN
i¼1

Gðxi; yiÞ

M
(4)

Here Gðxi; yiÞ means the gray value of coordinate ðxi; yiÞ in sat-
ellite image; M means the number of all sky pixels in the circular
region;Nmeans the number of calculated pixels in a circular region
that represents the target PV plant with radius r of the satellite
image; The radius r of the selected circular subimage region can be
set to the empirical value of 5 pixels, which can effectively cover the
sky conditions of the target PV plant.

To verify the correlation between GCQ values and PV power
theoretically, we extract GCQ values from circular regions covered
multiple PV plants in each satellite image and PV power data at the
same time, with 3-time horizons ranging from 9:00 to 10:00, 12:00

Fig. 2. (a) SCCF of solar power in the pair plant A-plant B; (b) SCCF of solar power in the pair plant A-plant C.

Fig. 3. A brief flow chart for the process of traditional PV power forecasting with
historical data from the neighboring plant.

Fig. 4. Satellite image-PV power relation between plant A and plant B.
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to 13:00, 16:00 to 17:00, respectively. The relation in each time
horizon is presented by scattering and color block diagrams. The
figures are shown in Fig. 5.

It is shown that in the first two cases, most spots gather at the
lower-left triangle, which indicates the mapping relation between
cloud quality and PV output data. Generally, when the gray values
are less than 64, a quite large proportion of PV output data are
above 0.5. And when the gray values increase gradually, most
points are located below. This conclusion obviously conforms to the
actual situation that when the extracted region is in blue sky
circumstance, the output usually rises high for the sake of a large
amount of irradiance arrival; when cloud cluster is moving above
the PV plant, the output value declines rapidly and maintains at a
low level. Due to the diverse intensity of sunlight, the gray value of
cloud pixel is hard to get above 200, resulting in few points located
at the bottom right corner. For the third case depicted in Fig.(c),
Fig.(f), the peak value of output can not arrive higher than 0.75 with
the limitation of time. It is not hard to observe that in this period of
time, the sun is gradually setting, which leads to a weak light
environment. So it makes sense when the gray values keep low, in
other words, at a darker circumstance, PV output extremely drops
down. To sum up, we can draw a simple conclusion that cloud
quality is one of the necessary factors to be considered in power
forecasting. Besides, the values of PV power are also subject to the
number of cloud pixels in the plant-blocked area by affecting the
level of light penetration. Hence, taking account of the cloud pixel
number and time information into the PV power forecast is highly
beneficial.

2.3. Training model methods

Information we select from the neighboring plant is explained
and proved in detail, which can be considered as a part of inputs
during model establishment. Except for model input extraction, the
selection of machine learning methods is also non-negligible. Here
we select three representative machine learning methods,
including SVM, GBDT, Autoregressive moving average model

(ARMA), to forecast the PV power of the target plant with a time
horizon from 15 min to 4 h. In order to verify the effectiveness of
the proposed method with model input based on spatio-temporal
correlation and neighboring image information, we apply these
models to make a contrast with other benchmarks without
neighboring image information. The introduction of these models
can be described as follows.

2.3.1. Support vector machine
SVM is one of the widely used machine learning methods

developed from statistical learning theory and is well-received due
to its better performance compared with other conventional
methods. Its statistical learning theory provides effective theoret-
ical support with a united frame, thus manage the problem of a
limited learning sample [38]. The mathematical principle of SVM
applied to regression forecast is denoted as follows.

With regard to a series of given samples: Tðx;yÞ;ðx1;y1Þ;ðx2;y2Þ;
‥‥; ðxn;ynÞ2Rn � R, assume the regression function as (5):

F ¼
n
f
���f ðxÞ¼wT , xþ b;w2Rn

o
(5)

Then the structure risk function in SVM can be formulated as
(6):

Rreg¼1
2
kwk2 þ C,Remp½f � (6)

where kwk2 is the describing function; f is the complexity term; C
is a constant value which means the tradeoff between empirical
risk and model complexity. To further determine the optimal hy-
perplane in case of a linearly inseparable dataset, the main solution
of the nonlinear Support Vector Regression (SVR) method is to map
the input x into higher dimensional feature space through the
nonlinear mapping process. Then proper linear regression can be
achieved in the feature space. Therefore, in this newly formed
space, there will be a possibility that the data can be linearly
separated. Then the regression problem can be denoted in another

Fig. 5. Relationship between cloud quality values and PV output data. (a) (d) Time horizon ranges from 9:00 to 10:00. (b) (e) Time horizon ranges from 12:00 to 13:00. (c) (f) Time
horizon ranges from 16:00 to 17:00.
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way:

min
1
2
kwk2 þ C

Xl

i¼1

xi (7)

which subject to (8).

yiðw ,4ðxiÞþ bÞ�1� xi; x � 0; i ¼ 1;…;C >0 (8)

The inner products 4ðxiÞ in higher dimensional space can be
substituted by various kinds of kernel functions Kðxi; xjÞ. Appro-
priate selection of the calculation kernels is capable of performing
necessary computations directly. Some frequently-used kernels are
depicted as follows.

Kðx; xiÞ¼ exp
�
�gkx� xik2

�
(9)

Kðx; xiÞ ¼ ð1þ x,xiÞd (10)

Eqs. (9) and (10) describe radial basis function (RBF) kernel and
polynomial kernel respectively. Here d represents the degree of the
polynomial kernel, g represents a constant determining the width
of RBF kernel.

In the actual situation, the kernel function selectionwould exert
a great impact on the final realized effect. So it is crucial to choose a
proper kernel function to optimize the kernel function solution.
Generally, RBF kernel function, polynomial kernel function, and
sigmoid function are the most commonly used kernel functions in
SVR.

2.3.2. Gradient Boosting Decision Trees
GBDT is essentially an ensemble machine learning technique

where multiple decision trees are trained and used to predict un-
seen data, and it has proven to be one of the most powerful tech-
niques for building predictive models because of its advantages
over simplicity and effectiveness [39]. Here, the GBDT method is
used to generate a prediction model for solar PV power forecasting,
which is composed of Multiple Classification and Regression Trees
(CART) by utilizing gradient boosting techniques [40]. To achieve a
better understanding, here we present a well-articulated intro-
duction to the theory of GBDT.

Assume x is the vectors of features and y is the target,
fðxi; yiÞgni¼1 is a training set. FMðxÞ is the final model afterM times of
iteration and Lðy; FðxÞÞ is a differentiable loss function. Then details
will be introduced to describe how the final model FMðxÞ is
established by gradient boosting on the basis of decision trees.

Initiate F0ðxÞ with a constant g, then the loss function can be
minimized by (11).

F0ðxÞ¼ argmin
g

Xn
i¼1

Lðyi;gÞ (11)

After that, gradient boosting iteration will be continued. For the
m th iteration, pseudo-residuals rm can be calculated by (12).

rim¼ �
�
vLðyi; FðxiÞÞ

vFðxiÞ
�
FðxÞ¼Fm�1ðxÞ

; i ¼ 1;…;n (12)

Then decision tree hmðxÞ is trained with a fixed J depth by using
fðxi;rimÞgni¼1. After finishing the calculation of hmðxÞ, the multiplier
gm can be derived as (13).

gm¼ argmin
g

Xn
i¼1

Lðyi; Fm�1ðxiÞþg ,hmðxiÞÞ (13)

Update the model FmðxÞ by (14).

FmðxÞ¼ Fm� 1ðxÞ þ y,gm,hmðxÞ (14)

In this function, y is the learning rate, which has another name
called “shrinkage factor”. Usually the greater the y is, the shorter
computation time and worse performance during the learning
process. Then after M times of iteration, we have the final model
FMðxÞ.

2.3.3. Auto-regressive and moving average model
In stationary random sequence analysis, the ARMAmodel is one

of the most widely used methods which have been in-depth
studied and investigated by scholars. After years of development
and implementation, the ARMA model has been achieved as a
progressive, integral, systematic modeling method. Meanwhile, it
owns a statistical sense of perfection and a substantial theoretical
basis.

SðtÞ¼
Xp
i¼1

aiSðt� iÞ þ
Xq
j¼1

bjeðt� jÞ (15)

From (15), it is easy to observe that the ARMA model is mainly
composed of two parts: auto-regressive (AR) part and moving
average (MA) part. In this function, SðtÞ is forecasted value at time t.
For the AR part, p, ai represent the order of AR process and AR
coefficient. For the MA part, q is the order of MA error term, bj, eðtÞ
represent the coefficient of MA and white noise respectively. Here
the white noise can generate random uncorrelated variables which
contain zero-mean value and constant variance [41]. In general,
ARMA requires a lot of historical data to establish the model. In this
paper, ARMA (p, q) is applied as one of the benchmark methods to
forecast PV power value within 4 h ahead.

2.4. Cloud displacement vector calculation

After establishing a forecasting model by applying power and
cloud information of neighboring and target plants as inputs, PV
power data of target plant at the current time as output, model
inputs in the next 4 h need to be required according to real-time
satellite image and historical power data. As the output power of
solar PV plants is mainly affected by the amount of irradiance
reaching the ground's surface, and related to the cloud distribution
over the plants at the correspondingmoment in time, the regions in
which clouds are located cover the target plant are necessary to be
acquired. In previous researches, different kinds of digital image
processing techniques were applied to achieve cloud motion
tracking. In order to simplify the process of cloud motion
displacement (CMD) calculation and improve its performance, in
this article, an improved FPCT method based on convolution
transform is applied. This transform method is verified to meet the
IPSI property [42], further opens up new possibilities in cloud
motion results and reduces the probability of final CMD with few
credibilities.

Traditional FPCT method is capable of acquiring an object's
motion information, especially rigid parallel motion, by means of
transforming image information from the time domain into the
frequency domain. After the image processing with Fourier
translation-based FPCT method, it is easy to find that the image
displacement information is mainly saved in phase spectrum, un-
related to amplitude spectrum, which further brings convenience
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to calculate CMD by dealing with information in phase spectrum.
The detailed deduction of FPCT is elaborated by (16)-(19).

The grayscale matrix resolution of an image f ðx; yÞ is assumed as
M � N. After processed with discrete Fourier transform (DFT), the
transformed form Fðu; vÞ which is corresponding to f ðx; yÞ can be
defined as follows:

Fðu; vÞ ¼
XM�1

x¼0

XN�1

y¼0

f ðx; yÞe�j2p
�

ux
Mþvy

N

�
¼ jFðu; vÞje�j4ðu;vÞ

ðu ¼ 0;1;…;M � 1; v ¼ 0;1;…;N � 1Þ

(16)

where x; y represent the cartesian coordinates of a pixel, and u; v
represent the pixel's Frequency domain coordinates.

In the ideal case, if two satellite images f1ðx; yÞ and f2ðx; yÞ only
differ with a displacement vector ðx0;y0Þ, then the formula can be
expressed as (17) to represent the relation between f1ðx; yÞ and
f2ðx;yÞ.

f2ðx; yÞ¼ f1ðx� x0; y� y0Þ (17)

Then the cross-power spectrum (CPS) can be denoted as (18):

Cðu; vÞ¼ F1ðu; vÞF2*ðu; vÞ
jF1ðu; vÞF2*ðu; vÞj

¼ e
j2p

�
ux0
M þvy0

N

�
(18)

where F*ðu; vÞ is complex conjugate, jFðu; vÞj is the amplitude of Fðu;
vÞ. After processing CPS Cðu; vÞ by using inverse discrete Fourier
transform (IDFT), the result of CMD ðx0; y0Þ can be finally denoted
as (19).

F�1fCðu; vÞg¼ dðx� x0; y� y0Þ (19)

However, considering the generation, dissipation, and defor-
mation of clouds, the ideal condition of rigid cloud motion would
not happen frequently, which results in a considerable amount of
noise during image registration and makes the true displacement
value ðx0; y0Þ submerged by other noise pulses. Hence, in order to
solve this problem, we choose the same satellite image pair for
multiple times using convolution transform with different kinds of
convolution kernel matrix hðx; yÞ, then FPCT calculation is pro-
ceeded, thus generating plenty of CMD calculation results.

Before image pre-processing, the convolution transform we
select should be verified corresponding to the IPSI characteristic,
which means that the information in the phase spectrum remains
the same either before or after the transformation. In this part, we
assume that a grayscale matrix f ðx; yÞ has the dimensions A � B,
convolution kernel matrix hðx; yÞ has the dimensions C � D. Then
the discrete convolution transform Iðx; yÞ is denoted as follows:

Iðx; yÞ ¼ f ðx; yÞ*hðx; yÞ ¼
XM�1

m¼0

XN�1

n¼0

hðm;nÞ,f ðx�m; y� nÞ

ðx ¼ 0;1;2;…;M � 1; y ¼ 0;1;2;…;N � 1;
M ¼ Aþ C � 1;N ¼ Bþ D� 1Þ

(20)

where f ðx; yÞ*hðx; yÞ means the convolution of f ðx; yÞ. The convo-
lution theorem is represented as (21):

Gðu; vÞ ¼ Fðf ðx; yÞ *hðx; yÞÞ ¼ Fðu; vÞHðu; vÞ (21)

Hence, according to (18) and (21), the CPS matrix can be ac-
quired from (22):

Cðu; vÞ¼ G1ðu; vÞG2
*ðu; vÞ

jG1ðu; vÞG2
*ðu; vÞj¼ e

j2p
�

ux0
M þvy0

N

�
(22)

which is equal to (18), so as to verify the fact that convolution
transform satisfies the IPSI theory.

After being processed with various convolution kernels, multi-
ple CMD results can be obtained. Assume that the coordinates of
CMDs are:

D¼fðx1; y1Þ; ðx2; y2Þ;/; ðxn; ynÞg (23)

In order to determine the desired final displacement, it is
necessary to extract the most credible CMD value from the result
dataset, which was generated by the improved FPCT method
mentioned above. Here we utilize the Gaussian distribution fitted
curve to achieve final displacement vector extraction.

In Fig. 6, CMD values of a pair of satellite images are shown in
the X-coordinate, the values in Y-coordinate represent the number
of points locating at different coordinates counting as 121 in total.
From the view of the CMD distribution diagram, we can draw a
simple conclusion explicitly: most result points converge in a
reliable region that may be the correct CMD in great probability.
During observation of the coordinate points based on the density
and distance distribution in Fig. 6, the Gaussian distribution curve
enables to fit the displacement point distribution. By using the
automatic curve-fitting function in MATLAB, here b1 denotes the
mean value of the fitting curve which represents the final CMD
value after rounding off.

2.5. Ultra-short-term PV power forecasting based on spatio-
temporal correlation and neighboring information

In this section, the framework of the proposed method using
spatio-temporal correlation and neighboring information for PV
power forecasting is introduced in detail. The implementation of
this framework is depicted as Fig. 7, which denotes that the method
mainly consists of 3 major parts see Fig. 8.

1) Model establishment: In this module, historical data from
several PV plants located at different places within a certain
region are collected. Then the neighboring plant which has the
strongest correlationwith the target plant can be determined by
calculating the maximum value of SCCF, as well as the value of
time lag t. In order to forecast the PV power output of the target
plant, the power datum of the neighboring plant, which is tmin

Fig. 6. Distribution of displacement points with Gaussian distribution fitted curve.
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before the forecasting moment, can be selected to guide and
facilitate the process of forecasting. Besides, as analyzed in
Section 2.2, cloud characteristics extracted from the sky area
above PV plants are verified to have a direct impact on PV power

output value at the corresponding time. Here cloud quality and
cloud pixel number in a circular atmospheric region above the
neighboring plant with a fixed radius are selected as two model
inputs. Similarly, the selectedmoment of cloud characteristics of
the neighboring plant is also t min before the forecasting time.
With the consideration of the effects of the sun's movement on
power forecasting, solar altitude, solar azimuth, and corre-
sponding time are also included. Except for cloud information,
power value of the target plant under a clear sky environment in
a whole day is also necessary. For the sake of the earth's revo-
lution around the sun, the daily extraterrestrial irradiance of a
certain region accords with adjacent similarity and annual
periodicity. The adjacent similarity means that the changing
rule of irradiance in one day is similar to the one of the neigh-
boring days. As for annual periodicity, it presents the phenom-
enon that the irradiance data in the same ahargana of different
years are nearly the same. Therefore, in order to obtain the value
of PV power output under a clear sky environment, power data
in a clear sky condition selected from neighboring days for the
same predicted PV plant can be utilized to further achieve the
power forecasting. Then after data normalization, the fore-
casting model can be established by applying SVM and GBDT
respectively.

2) Correlation judgment: In order to determine whether the pro-
posed method should be used to achieve PV power forecasting
of the target plant during a period of time, it is necessary to
detect whether there is a neighboring plant with a strongly
spatio-temporal correlation to the target plant existing in target
plant's perimeter zone. If the peak value of all SCCF curves of
checked surrounding plants is greater than the threshold ε, and

Fig. 7. The framework of the proposed PV power forecasting method based on spatio-temporal correlation and neighboring information.

Fig. 8. The sub-method of PV power forecasting with a time horizon between tþ 15
min to 4 h.
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the cloud motion direction is from the neighboring plant with a
maximum value of SCCF towards the target plant, then the time
lag t can be determined and the neighboring plant's historical
data could be used in next forecasting part. If not, the traditional
forecasting method without neighboring data is applied to
generate ultra-short-term solar PV power forecasting.

3) Power forecasting: After determining the neighboring plant and
the value of time lag t, model inputs could be obtained, such as
cloud quality, cloud pixel number of neighboring plant, fore-
casting time t, solar azimuth, solar altitude, clear sky power
output of target plant Pclear , the power output of neighboring
plant t min before forecasting time PNðt � tÞ, to acquire power
output of target plant at forecasting time PT ðtÞ. However, for the
sake of wind speed and geographic distance between target
plant and neighboring plant, generally, the time lag value t is
not high enough to reach 4 h, or even closer. Therefore, the
method considering spatio-temporal correlation can only
generate forecasting results from 15 min up to t min ahead. For
the horizon in the range of tþ 15 min to 4 h, the submethod
should be applied which is depicted as Fig. 8. As cloud motion is
a reflection of the atmospheric physical motion process, CMDs
calculated from a series of consecutive satellite image pairs
should usually be similar due to inertia. Hence, based on his-
torical cloud motion calculation, cloud motion above the
neighboring plant in the future can be obtained by using linear
extrapolation, then the regions which will cover the neigh-
boring plant can also be acquired. After cloud characteristic
extraction and other inputs calculation, it is feasible to achieve
the output forecasting of the target plant with a time horizon
between tþ 15 min to 4 h.

The main technology route of ultra-short-term solar PV power
forecasting considering cloud information from the neighboring
plant is described as follows:

1) Calculate all SCCF indexes of two PV power time series
generated from each surrounding plant and target plant pair
with a fixed-size observation window. If the maximum value
of SCCF is less than the threshold ε, the group of samples
should not be regarded as a part of themodel training sample
set. If not, the corresponding time of the maximum value of
SCCF can seem as time lag t;

2) Extract neighboring plant's circular subimage region with
radius r;

3) Acquire cloud quality, cloud pixel number from subimage,
solar altitude, solar azimuth, power in clear sky condition
Pclear , time, power output of neighboring plant t min ago as
model inputs, power output of target plant as model output;

4) Select one of these two machine learning methods to train
the groups of samples: i) SVM; ii) GBDT.

5) Calculate time lag t’ between forecasted target plant and
neighboring plant pair;

6) Calculate cloud motion direction D1 and physical distance
direction of 2 plants D2;

7) If the absolute value of the difference between D1 and D2 is
less than 45�, then skip to step 8); or else, apply traditional
method without neighboring data to achieve the forecasting;

8) Acquire cloud quality, cloud pixel number from neighboring
plant's subimage, solar altitude, solar azimuth, power in clear
sky condition Pclear , predicted time, power output of neigh-
boring plant t’ min before predicted time as model inputs,

9) Forecast power output of target plant within the range be-
tween 15 min and up to t’ min by using one of the estab-
lished models mentioned in step 4);

10) Forecast power output of target plant within the range be-
tween t’ þ 15 min and up to 4 h by using sub method.

3. Case study

3.1. Data

The dataset used in this study contained actual solar PV power
output with 15 min observation intervals, from January 2018 to
June 2019, for 21 PV systems monitored in Jilin Province, China,
which is shown in Fig. 9. The region selected lies in the latitude
range 42.73e45.83� and the longitude range 122.83e125.43�. Sat-
ellite image datasets are acquired from a stationary meteorology
satellite named Fengyun-4A, which is in charge of the National
Satellite Meteorological Center (NSMC). The file size of each image
is approximately 170Mb and the time resolution per graph is about
5 min. In order to be consistent with power data, the time resolu-
tion of images should also be modified to 15 min. In this paper, we
choose 2 adjacent PV plants pair as testees: plants 503 and 508,
plants 519 and 520, to verify the performance of the proposed
method. Detailed geographical information of these 4 PV plants are
depicted in Table 1.

3.2. Simulation process

In this part, the key process of model establishment is analyzed
and introduced in detail. Data averaged each 15 min from 2 pairs of
target and neighboring plants: plant 503 and plant 508, plant 519
and plant 520 are utilized in the study. Plants 503 and 519 are target
plants and plants 508 and 520 are neighboring plants. During the
process of model establishment, solar data records from Jan. 01,
2018 toMay 31, 2019 in Jilin province are considered as training and
validation sets. To clearly observe the performance of forecasting
methods, solar PV power data of each target plant are predicted by
both 5 methods, from Jun. 01, 2019 to Jun. 30, 2019, counting up to
30 days in total. To realize the proposed method elaborately, we
choose Jul. 30, 2019 at 9:00 a.m. as the forecasted start time, to
further explain the forecasting process, which could also be shown
as Fig. 10.

First, we need to determine whether the proposed model is
suitable for a specific forecasting time period. The time lag value t

should accord with the following terms:

Fig. 9. Geographical distribution of 21 PV plants.
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1) the max value of SCCF t must exceed a certain threshold level ε,
in case PV power time series of two plants may have a weak
correlation, especially on the occasion of undesired cloud mo-
tion direction;

2) calculated time lag t should accord to the fact, which means the
cloud motion direction should be the same with relative
geographical direction of the selected target and neighboring
plants;

3) the value of time lag t must be positive.

If calculated t fits the above-mentioned conditions, then the
power output and cloud information of neighboring plant at time
t � t can be seemed as guidance to facilitate the forecasting of
target plant output at time t.

If not, a traditional forecasting method based on cloud charac-
teristic extraction by using linear extrapolation can be applied to
achieve the forecast. As for this method, only target plant's data are
used, which contains cloud quality, cloud pixel number, forecasting
time t, solar azimuth, solar altitude, clear sky power output and real
solar data records. A “satellite image e PV power” mapping model
is established by using the Back-Propagation neural network
(BPNN) with model output solar data records and other factors
identified above as model inputs. Due to cloud motion is an inertia-
based process and it is incredible to generate vigorous change in
velocity within a short time, according to calculated CMDs between
each pair of consecutive satellite images during the previous time
period, the locations where clouds cover the plant can be acquired
after calculated displacement values average and linear

extrapolation. Then location-specific cloud characteristics with
other factors are able to be put into the training model, thus fore-
casting PV power output within 4 h can be acquired.

When the calculated time lag t is reasonable, which indicates
that there is a strong spatio-temporal correlation between the
target and neighboring plants, it is theoretically feasible to adopt
neighboring information with regular forecasting factors such as

time, meteorological information, and historical power output data
as model inputs, to conduct the future forecasting process. In this
paper, the inputs of the proposed forecasting model not merely
contain the neighboring power data like traditional spatio-
temporal correlation-based method, but also contain the neigh-
boring cloud information with the consideration of a graphical
standpoint, including cloud quality, cloud pixel number from
neighboring plant's subimage, solar altitude, solar azimuth, power
in clear sky condition Pclear , predicted time, the power output of
neighboring plant t0 min before the predicted time t. Then the
output of the target plant at time t can be forecasted by using the
SVM or GBDT forecasting model. However, with regard to the re-
striction of lagging duration, the forecasting method considering
spatio-temporal correlation further increases the difficulties in the
length of predictable time horizon. For the forecasting PV power
output within the range between t0þ15 min and up to 4 h, the
applied method is similar to the traditional forecasting method
based on cloud characteristic extraction by using linear extrapola-
tion, except for the starting region of subimage extraction, which is
from the neighboring plant rather than target plant.

Herewe apply a set of approaches to test both of these methods’
performance of ultra-short-term PV power forecasting for two
target plants. Five forecasting methods are exhibited as follows.

1) Method 1: Proposed ultra-short-term solar PV power fore-
casting with neighboring plant's cloud information and power
data by using SVM.

Table 1
Location information of 2 PV plants pair.

Plant Lat Lon Distance

1 503 45�300 N 122�830 E 19.6 km
2 508 45�320 N 122�580 E
3 519 44�400 N 123�200 E 33.5 km
4 520 44�130 N 123�390 E

Fig. 10. Flowchart of the simulation process.
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2) Method 2: Proposed ultra-short-term solar PV power fore-
casting with neighboring plant's cloud information and power
data by using GBDT.

3) Benchmark 1: Method 1 without cloud characteristic inputs.
4) Benchmark 2: Method 2 without cloud characteristic inputs.
5) Benchmark 3: PV power forecasting by using ARMA.

4. Results and discussion

A detailed evaluation of the accuracy of solar PV power fore-
casting was performed in this Section for the ensemble of two
target PV plants: plant 503 and plant 519. The proposed algorithm-
based spatio-temporal correlation and neighboring image infor-
mation is applied as a primary forecasting approach to the
considered datasets. As indicated before, 30 days of the forecasting
stage from Jun. 01, 2019 to Jun. 30, 2019 are considered as test data.

To evaluate the effectiveness of the proposed method, we
compare this model with traditional forecasting methods (Bench-
mark 1 and Benchmark 2) and ARMA (Benchmark 3), which apply
the same artificial intelligence-based models with the proposed
method, respectively SVM and GBDT models. To provide a conve-
nient multi-viewpoints observation, for plant 503, forecasting PV
power results from Jun. 24, 2019 to Jun. 30, 2019 are presented as
Fig. 11, Fig. 12 and Fig. 13. The 1st, 4th, 8th, 16th forecasting points,

corresponding to the results 15 min, 1 h, 2 h, 4 h after the predicted
initial time respectively, are denoted in each figure, and further
show the forecasting accuracy at different times explicitly.

It can be seen that the forecasting accuracy of ARMA is the
lowest among all these artificial intelligence-based models. This
method is widely used in the prediction of smooth time series by
exploring the laws of data during the data mining process. For the
time series with sharp irregular fluctuation, the forecasting results
of this method are not ideal, thus deliver a relatively poor perfor-
mance. As for other methods, forecasting accuracy are both higher
than ARMA due to model input addition with power data from
neighboring plant based on spatio-temporal correlation. It can also
be observed that compared to Benchmark 1 and Benchmark 2,
Method 1 andMethod 2 have amore effective and robust capability
to complete the forecast for the time horizon within t min, while
the performances of Benchmarks pair and Methods pair are prac-
tically similar with the time horizon between tþ 15min and 4 h. To
evaluate various forecasting methods comprehensively, statistical
parameters such as Root Mean Squared Error (RMSE), Mean Ab-
solute Error (MAE) are applied to modify the forecasting results of
the proposed method and benchmarks according to different
evaluation criteria. In Table 2, the calculated statistics of all
methods are listed in conditions of two target plants. In terms of
forecasting accuracy, it can be seen that Method 1 and Method 2

Fig. 11. Forecasting results of proposed method by using SVM and GBDT aiming at 503 PV plant.
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Fig. 12. Forecasting results of Benchmark 1 and Benchmark 2 by using SVM and GBDT aiming at 503 PV plant.

Fig. 13. Forecasting results of Benchmark 3 by using ARMA aiming at 503 PV plant.

Table 2
30 days’ forecasting accuracy of different models.

Plant Indexes Method 1 Method 2 Benchmark 1 Benchmark 2 Benchmark 3

503 MAE 4.12% 4.14% 4.42% 4.60% 8.47%
RMSE 9.48% 9.54% 10.14% 10.55% 18.28%

519 MAE 3.84% 3.70% 4.22% 4.28% 8.57%
RMSE 8.77% 8.54% 9.85% 9.95% 18.45%
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outperform the other approaches with respect to all error metrics.
Considering the MAE and RMSE values as an explanation, the
proposed method achieves a higher accuracy at 4.12%, 9.48%, and
3.70%, 8.54% for plant 503 and plant 519, respectively.

In order to avoid that the good performance of the proposed
method is time-dependent, a supplementary case is further carried
out, which aims to forecast the solar PV power output from Feb. 01,
2019 to Jun. 30, 2019, counting up to 4 months in total. The training
sets are from Jan. 01, 2018 to Jan. 31, 2019. The results indicate that
among all the tested days for target plants 503 and 519, 14.24% and
15.72% of the data satisfy the judging conditions and use the
neighboring plant's cloud information-based forecasting method
while the others use the traditional method for ultra-short-term
solar PV power forecasting. The forecasting accuracy is shown in
Table 3, which presents that the proposed method 1 and method 2
are still superior to the benchmark methods in terms of forecasting
accuracy. In this 4-month case, the proposed method achieves a
higher accuracy at 4.73%, 10.54%, and 4.88%, 11.04% for plant 503
and plant 519, respectively. It verifies the effectiveness of the pro-
posed method together with the one-month forecasting results.

According to the above comparison of PV power forecasting
methods, the advancement and effectiveness of the proposed
methods could be verified. The primary advantageous property of
the proposed PV power forecasting method is that it could achieve
a better forecast precision, which can be attributed to its combining
consideration of the spatio-temporal correlation between two
adjacent plants. Since the fluctuation characteristic of PV power
output is closely related to cloud movement conditions, which
establishes the decisive role of cloud feature extraction in the ac-
curate solar PV forecasting process. The consideration of satellite
image data captured above both the target and neighboring plants
offers the proposed method easy access to the accurate and real-
time cloud features. In this way, these cloud features could be
regarded as the inputs of the forecasting model for both training
and testing, and realize the improvement of forecasting precision
compared with Benchmark method 1e3, which does not consider
the spatial correlation of neighboring plants. Benchmark method 3
only considers the target plant's historical data to train the fore-
casting model, hence, it presents the lowest accuracy; On the basis
of Benchmark method 3, Benchmark methods 1 and 2 further
combine the time-lag information of cloud movement in their
forecasting process and thus better results are achieved. However,
compared to the proposed method, it only considers the temporal
correlation to achieve PV power forecasting, therefore, its perfor-
mance is inferior to that of the proposed method.

In terms of the limitations, the proposed method shows in-
adequacy in two aspects: 1) Heavier computation burden. When it
comes to computation burdens, Benchmark method 3 is the least
time-consuming one and undertakes the minimum computational
burden, and Benchmark methods 1,2 also outperform the proposed
method. This is due to these methods have no need to extract cloud
characteristics from the high-resolution satellite cloud images,
which is a relatively comparatively complicated process. In addi-
tion, Benchmark method 3 further saves itself some computation
time because the relatively complex linear extrapolation step in
method 2 is not required in method 3; 2) More restrictions and

more relevant information are needed. Before the application of the
neighboring plant's cloud information-based forecasting method, it
is necessary to detect whether there is a neighboring plant with a
strongly spatio-temporal correlation to the target plant existing in
the target plant's perimeter zone and whether the cloud motion
direction is from the neighboring plant to the target plant. This
places restrictions on the extensive applications of this method in
comparison with Benchmark method 3 which could achieve fore-
casting as long as the PV output data of the target plant is available.

It should be noted that, although the proposed method could
achieve a great prediction precision, many factors will cause an
accuracy decline effect in the forecasting process. Even though two
PV power time series is matching well in a certain observation
window, there is no guarantee that the power output values during
the forecasting time period still accord with the same condition. In
other words, the lagging effect will not be constant all the time
which reflecting as a changing time lag value. Besides, cloud gen-
eration, elimination, deformation are complex atmospheric physics
processes. The motion of clouds is hard to track and highly related
to wind speed and direction. During cloud motion between two
plants, the thickness and shape of clouds will change seriously
when arriving at the target plant. Under the circumstance that
cloud distribution is highly dispersed, such as blocky clouds, the
clouds may even disappear before arrival. All these cases will result
in invalid extraction of cloud characteristic input in the proposed
method, which fails to bring improvement on forecasting accuracy.
What's more, it is a very complicated task to acquire accurate PV
power output of target plant in clear sky condition, which is
affected by the expansion and demolition of PV power plants,
change of temperature, power generation limit by the grid, etc.
These factors directly influence the generating capacity and will
cause an increased error during forecasting.

4.1. Applications and economic benefits

The economic benefits of the ultra-short-term PV power fore-
casting method can be categorized into three main aspects:

Firstly, for PV power plants, they attempt to improve the ultra-
short-term PV power forecasting accuracy not only for the
compliment with the operational requirements of the power sys-
tem, but also for avoiding penalty due to inaccurate prediction. Take
a 100 MW PV plant in Northeast China as an example, each 1%
improvement in prediction accuracy could save about 180 thousand
yuan of penalty throughout the year under the current assessment
standard. That is, the forecasting accuracy is directly related to their
economic benefits.

Secondly, with the deepening reform of the electricity market,
accurate PV power forecasting lays a solid foundation for the
market participants like PV power plants in formulating transaction
strategies. Provided that 10% of the electricity consumption will be
traded and settled in the spot market, the fluctuation of electricity
bills caused by PV output forecasting error and non-optimal market
bidding strategy will reach tens of billions of yuan per year. At that
time, the commercial returns brought by improving the accuracy of
power forecasting by 1% will far exceed the penalty savings of grid
assessment.

Table 3
4 months’ forecasting accuracy of different models.

Plant Indexes Method 1 Method 2 Benchmark 1 Benchmark 2 Benchmark 3

503 MAE 4.73% 4.84% 5.02% 4.94% 8.39%
RMSE 10.54% 10.71% 11.14% 10.95% 18.08%

519 MAE 4.92% 4.88% 5.14% 5.24% 8.61%
RMSE 11.13% 11.04% 11.65% 11.85% 18.55%
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Thirdly, there would be an increasing number of entities with
the demand for power forecasting, which will create additional
economic benefits for the forecasting method. For example, except
for traditional centralized PV power plants and the independent
system operator, who will continue to improve their forecasting
accuracy, the deep penetration of distributed PV will also bring
incremental necessities for renewable power forecasting.

5. Conclusion

An ultra-short-term PV power forecasting method combining
spatio-temporal correlation with cloud information from the
neighboring plant is proposed in this paper. The PV power output
has both random and periodic fluctuation due to cloud motion and
daily change of sunlight. Thus, more detailed information which
can track the volatility should be applied to the forecasting model.
The relationship between two PV power time series from the target
and neighboring plants is firstly explored which can be trans-
formed and indicated as time lag t. Then the mapping relationship
is proved between cloud characteristic indexes extracted from
neighboring satellite images and the target plant's solar power
data. In addition to neighboring cloud information and historical
power data, other factors such as time, solar altitude, solar azimuth,
power in clear sky conditions are taken into consideration to
training the forecasting model by using SVM and GBDT. Then the
proposedmodel can bewell-established. To this end, onlywhen the
two PV power time series have a strong correlation, and the
calculated time lag t is corresponding to the geographical direction
between the neighboring plant and target plant, the proposed
method can be used. Or else, the traditional method is applied to
achieve the forecast. To verify the accuracy of this novel method all-
sidely, forecast models without cloud information, merely with
historical text data of neighboring and target plants are considered
to contrast. Data of two target plants named plant 503 and plant
519 are occupied to test this proposed method. Simulation results
using actual data show that the proposed method can promote the
accuracy of ultra-short-term solar PV power forecasting, and the
neighboring cloud information is also suggested to help obtain
more accurate forecasting results.
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