Modelling bubble-particle interaction
NUMAP-FOAM 2009

Gijsbert Wierink

Research Group of Mechanical Process Technology and Recycling
Helsinki University of Technology
Finland

Monday September 14 2009
Outline

1. Introduction
2. Solver
3. Preliminary results
4. Future development
5. Conclusions
Mineral froth flotation

Source: Gijsbert Wierink NUMAP-FOAM 2009

Modelling bubble-particle interaction
Scope

Aim: development of a turbulent bubble-particle interaction solver

Bubble-particle interaction models are used to improve design and optimization of froth flotation equipment

Bubbles: 0.7-1.5 mm, particles: ~ 100 µm, Re_b: 200-400

(Courtesy of B. Omelka, HUT, August 2009)
Bubble-particle interaction (bpiFoam):

- Bubble-water interface tracking (bubbleInterTrackFoam\(^1\))
- Lagrangian particle tracking (dropletFoam\(^2\))
- LES turbulence model
- Additional drag and lift forces
- Bubble-particle interaction models

\(^1\)Z. Tukovic and H. Jasak
\(^2\)H. Jasak
Modelling steps

- Bubble and particle have own velocity
- Upon collision
 - Interface patch hit is identified
 - Particle velocity is forced along interface:
 \[U_{particle} \rightarrow \nabla S \cdot U_{patch} \] (1)
- Particle slides along interface as long as
 \[P_{detach} = \exp \left[A_S \left(1 - \frac{1}{B_0^*} \right) \right] < 0.5 \] (2)
 \[B_0^* = f(\Delta \rho, \varepsilon, g, d_p, d_b, \sigma, \theta)^3 \] (3)
- After detachment particle regains own velocity

\[^3\text{Schulze, 1993}\]

Gijsbert Wierink
Modelling bubble-particle interaction
Preliminary results (2D)

- Bubble: 1.5 mm, particle: 100 \mu m (quartz)

Gijsbert Wierink
NUMAP-FOAM 2009
Modelling bubble-particle interaction
Future development

- Test the solver for stability and parallelization
- Implement more accurate bubble-particle interaction models
- Improve accuracy of surface force calculation
- Implement particle-particle interaction
- Include Van der Waals force, ζ-potential, and Eh-Ph-conditions
- Experimental validation of statistics and extrapolation to larger scale

Re ~ 5000
Conclusions

- The turbulent bubble-particle interaction model bpiFoam has been implemented in OpenFOAM
 - bubbleInterTrackFoam and dropletFoam have been merged
 - Addition of lift force, “dirty water” drag force, an interaction model, and LES turbulence model
- The first 2D test case shows the solver is stable and runs in parallel
- Future development:
 - Test bpiFoam for longer run times and in 3D
 - Make detachment criterion time step independent
 - Statistical validation using bubble-particle collision experiments