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This work presents a novel P-graph-based model for optimizing a biomass supply network. 

The objective of this optimization is twofold: to find the most cost-effective biomass supply 

network with a minimum cost, while also fulfilling the required greenhouse gas (GHG) 

emissions savings defined in Directive 2018/2001 (80% savings compared to fossil fuel 

comparators) for the use of biogas. 

To achieve this goal, an extension to a P-graph-based biomass supply network was developed, 

which allows the optimization of the network while limiting GHG emissions associated with 

the use of biogas. The model includes a summary of GHG emissions for each stage of biogas 

production and consumption, compared to threshold values. Additionally, seasonal variation in 

biomass supply was integrated into the model by using a multiperiod approach. 

The model was developed and solved in P-Graph Studio, with input data defined using the 

Geographic Information System (GIS) tool, including feedstock availability, an optimal 

location for a biogas site, and transportation distance. The approach was tested in a case study 

located in a rural area. This model can benefit a wide range of stakeholders, including biogas 

plant operators, policymakers, researchers, and energy regulatory authorities. 

1. Introduction 

A drastic acceleration of the energy transition and an increase in natural gas independence is 

required in light of the changing geopolitical and energy market realities. Anaerobic digestion 

(AD) of by-products, residues and waste materials has not only been recognised as technology 

for the generation of sustainable alternative fuel but is also an environmentally friendly waste 

treatment method [1]. Biogas production in the European Union (EU) has steadily increased 

during the last decade, going from 6,227 biogas plants in 2009 [2] to 20,000 in 2021 [3]. Up to 

72 % of the feedstock used for biogas production comes from the agricultural sector [4], mostly 

from maize silage. The competitive use of biogas feedstocks with food and feed production 

raised not only environmental but also socio-economic concerns, reflected in new sustainability 

requirements, defined by EU legislation. The revised Renewable Energy Directive 

(D2018/2001), which came into force in December 2018, established sustainability and the 

greenhouse gas (GHG) emission-reduction standards that biogas used in transportation, 

electricity, heating, and cooling must meet. Concerning GHG savings, the Directive defines 

that the GHG savings from the use of biomass for electricity, heating and cooling production 

should be at least 70% for installations starting operation from the beginning of the year 2021 

until the end of 2025 and 80 % for installations starting operation from 2026 [5]. Furthermore, 

the European Commission (EC) set a cap on food and feed crops toward the EU renewable 

objective, starting at 7% in 2021 and gradually decreasing to 0% in 2030, in order to reduce 

the impact of Indirect Land-Use Change (ILUC). With the given new requirements, the 

utilization of materials previously regarded as waste is receiving increased attention, as it not 

only improves the sustainability of biogas production but also improves waste management 
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and resource efficiency. Hence, biogas production can serve as a treatment plant that converts 

waste resources into high-value products, consequently contributing towards the objectives of 

the European Circular Economy Action Plan [6]. In their paper, the European Biogas 

Association highlighted the untapped opportunities for GHG savings through the utilization of 

industrial waste, loaded with organic matter, for biogas production [7], as waste management 

measures have a significant effect on climate change mitigation [8]. Furthermore, 

lignocellulose biomass is now recognised as a significant untapped source of renewable energy, 

that may substantially contribute towards fulfilling the global demand for renewable energy 

[9].  

A transition toward more sustainable biogas and biofuel production seeks more research on the 

more sustainable alternatives (such as residues and by-products) which should replace the 

currently dominant maize silage in biogas production by fulfilling the sustainability and 

greenhouse emission criteria [10]. The potential of biomass residues that is accessible for the 

production of biogas is limited by factors like their low energy density, scattered production 

and competitiveness with other uses [11]. Assessment of this potential is the necessary first 

step and it should include spatial dimension. The application of GIS technologies has been 

recognised as being particularly beneficial for mapping biomass potential during the past ten 

years since it can deliver insightful information about the spatial distribution of the biomass 

potential and input data for biomass potential analysis. 

One of the main barriers to enhanced biomass utilisation in energy supply is the economic 

viability of a biomass supply network. Different methods for optimising the biomass supply 

network have been presented in the literature to overcome this obstacle. It has been recognised 

that graph theory methods are being employed more frequently to solve biomass supply 

network modelling issues. Graph theory is the study of graphs, which are mathematical 

constructions used to represent pairwise relationships between objects. Implementation of 

graph theory methods offers several advantages for supply network modelling. Some of the 

advantages of graph theory methods are a representation of decision structures (solutions), the 

algorithmic generation of a mathematical model and the derivation of multiple alternative 

solutions [12]. In comparison to the other methods, such as Mixed-Integer Linear Programming 

(MILP), there is a reduced complexity of the solution procedure. 

1.1 Literature review  

It is becoming evident that energy systems modelling is progressively embracing different 

types of integrative approaches [13]. Murele et al. [14] investigated the influence of the 

integration of biomass into coal-based energy supply networks. Results of the optimisation 

aimed to minimise the cost of the energy supply network, obtained through the General 

Algebraic Modelling System software (GAMS), indicate that a biomass fraction of 7.9% in the 

mixed solid fuel will provide an optimal solution, as it would result in a balanced cost decrease 

of the emission cost and increase of the supply network. Simon et al. [15] developed a model 

that simulates the supply curve of wood biomass from the sustainable management of natural 

forests. The findings indicate that the maximum admissible distance to the nearest 

transportation route and the associated transportation expenses are the two factors that exert 

the greatest impact on both the supply and cost of wood biomass. Rentizelas et al. [16] applied 

the Data Envelopment Analysis method for assessing the cost, energy and GHG emission 

efficiency of international biomass supply network pathways. The selection of the most 

efficient pathway depends on the total cost, energy consumption and emissions, as well as 

priorities of the decision maker. Shen et al. [17] developed a novel mathematical optimisation 
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approach that allows the reduction of redundancy of data series to solve the multi-echelon 

biomass supply problem. This multi-echelon biomass supply problem includes economic, 

environmental and social indicators, optimised by maximising economic viability and social 

benefit while minimising environmental emission through a weighted-sum approach and max-

min aggregation approach. 

The use of P-graphs in energy system modelling has intensified during the past two decades. 

In their recent paper, Xu et al. [18] implemented the P-graph approach to define optimal energy 

export strategies of islands, whose objective is to minimise construction, operating and 

environmental cost (related to greenhouse gas footprint). Results showed that the best 

operational path and the best economical cost are in the case of export by electricity. Similar 

to this, the paper published in April 2023, written by Ji et al. [19] presents the implementation 

of the P-graph approach for the optimisation of multi-period renewable energy systems with 

hydrogen and battery energy storage. For the developed biomass energy supply scenario, the 

results show that the renewable energy systems with hydrogen storage and battery storage are, 

respectively, 21.5 % and 5.3 % cheaper than those without energy storage. The developed 

model investigates CO2 generation and includes it in the optimisation through the cost of CO2 

emissions. Aviso et al. [20] implemented a P-graph approach to the development of optimal 

and sub-optimal biochar-based carbon networks. Here, the objective was to optimise the 

network in terms of overall carbon sequestered annually, without exceeding constraints on soil 

contamination. Lam et al. [21] have proposed a model to integrate palm biomass and waste 

motor oil into the waste-to-energy model. The method to solve the combinatorial of the biomass 

supply chain in Federal Land Development Authority Jengka was presented by Varbanov et al. 

[22]. Here, the authors have proposed possible locations for building a new biomass processing 

facility in the considered region, which should be used for the utilization of waste from oil 

palm biomass processing. Malladi et al. [23] have created a decision support tool to optimise 

the short-term logistics of forest-based biomass through the minimisation of the biomass 

logistic cost. The method to solve the combinatorial of the biomass supply chain in Federal 

Land Development Authority Jengka was presented by Varbanov et al. [22]. Here, the authors 

have proposed possible locations for building a new biomass processing facility in the 

considered region, which should be used for the utilization of waste from oil palm biomass 

processing. Malladi et al. [23] have created a decision support tool to optimise the short-term 

logistics of forest-based biomass through the minimisation of the biomass logistic cost.  Van 

Fan et al. [24] applied the P-graph approach to detect cost-optimal and suboptimal pre-and 

post-treatment pathways for the anaerobic digestion of lignocellulosic waste. The result of the 

optimisation for the lignocellulosic waste showed that alkali CaO pre-treatment proved to be 

the cost-optimal pre-treatment option of the lignocellulosic waste, while H2S + membrane 

separation proved to be the cost-optimal post-treatment (biomethane upgrading) option. 

Benjamin [25]. developed a P-graph approach to perform a critical analysis of an integrated 

network of biomass processing industries under scenarios that involve both supply and demand 

side disturbances. This methodology enables the reduction of the net product stream output that 

results from the occurrence of climate change-induced events (supply-side disruptions) and 

seasonal fluctuations in demand, to be assessed. Vance et al. [26] implemented the P-graph 

method for the development of economically optimal and suboptimal structures of biomass 

network that includes corn silage, grass silage, corn straw and wood as feedstock material for 

combined heat and power (CHP) units. For the obtained results (ranked structures) ecological 

footprint was assessed, indicating the amount of land required to support and assimilate a given 
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human population’s consumption and wastes. The structures whose ecological footprint was 

lower than the given threshold were considered sustainable.  

The objective of this work is to develop a novel P-graph-based method for economical 

optimisation of the biomass supply network, that meets requirements on greenhouse gas 

emissions savings and considers the seasonality of biomass availability, a P-graph based model 

was developed. The threshold of this requirement is defined in Directive 2018/2001 and it 

equals 80% savings compared to fossil fuel comparator. As represented in the literature review, 

studies in this field determine the economically optimal and sub-optimal biomass networks and 

thereafter compare the ecological footprint/environment constraints upon the optimisation 

process. Furthermore, the seasonality of biomass supply and biogas demand is mostly 

neglected, although it may have a significant impact on the viability of utilisation of feedstocks 

with high seasonal fluctuations, such as industrial by-products and agricultural residues. To 

address this research gap, the contributions which this study delivers, in comparison to earlier 

research are the following: 

• a P-graph-based model which enables the optimisation of a biomass supply network 

that simultaneously limits the GHG emissions that a biomass network can generate and 

defines the optimal and sub-optimal economical structures, which are in line with the 

requirements of the GHG emission savings; 

• the developed model integrates the seasonality of biomass supply, through the 

implementation of the multi-period approach. Hence, the limitations on greenhouse gas 

emissions are automated and fulfilled for each period.  

2. Problem statement 

To investigate the possibilities of the P-graph approach to perform an economical optimisation 

of the biomass supply chain, that meets requirements on greenhouse gas emissions savings and 

considers the seasonality of biomass availability, the P-graph-based model was developed. The 

main assumptions of the problem can be defined as follows. 

 

• GHG emission-saving requirements 

i. The assumption is used that biogas produced in anaerobic digestion is future utilised 

in a CHP engine, which supplies the electric and heat demand of the process. This 

is a so-called case 1 in D2018/2001. This assumption was used for the calculation 

of the maximal allowed total GHG emissions.  

• To ensure the compliance of resulting structures (optimal and suboptimal) with GHG 

saving requirements defined in Directive 2018/2001 80% GHG emission savings 

compared to the fossil fuel comparator), authors calculated the maximal allowed GHG 

emissions in their previous work [27]. For a typical case, where electrical and heat 

efficiency is 36% and 43% respectively, the maximal total GHG emissions equals 16.95 

gCO2/MJ biogas. In the developed model, this value is set as a threshold. Seasonality 

of feedstock availability  

i. Feedstock availability through a year is represented through multi-period 

representation. Here, the assumption is used that biomass available for biogas 

production is the one generated in the specific period (month/s). There is a threefold 

reason for this. The first one is that some of the considered feedstock can not be 

stored for a longer period of time, due to potential changes in feedstock conditions, 

which could result in the adverse performance of biogas production. The second is 
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that seasonal feedstock storage may result in additional methane emissions 

generated during the storage period, which could result in exceeding the threshold 

of GHG emissions, due to the high global warming potential of methane. The final 

one is the cost of the investment and maintenance of the seasonal storage. 

ii. In case the required biogas production exceeds the biogas potential contained in the 

biomass, the assumption was used that this gap will be covered with the wheat 

straw, due to favourable storage properties. 

• Cost of biomass supply network 

i. The cost of anaerobic digestion is considered to be the same for each biomass supply 

network. Therefore, this cost is not included in the cost of the biomass supply 

network, as it does not differ for different structures of biomass supply networks.  

ii. The cost of a feedstock, transport and processing is considered and calculated as a 

specific cost (cost per unit of mass or energy).   

 

The objective function of the optimisation is to minimise the cost of the biomass supply 

network while fulfilling the given constraints regarding GHG savings and maximising the 

utilisation of seasonally available biomass. The hypothesis of this work is that an economically 

optimal residual biomass supply network for biogas production, that meets sustainability and 

greenhouse gas emissions saving criteria, could be determined with the P-graph approach. 

 

3. Method 

The method used for this work can be divided into two major sections. The first part of the 

research is conducted with the GIS tool and the second part of the research is conducted with 

the P -graph tool. The flowchart presented in Figure 1 represents the steps of the method, which 

are explained in detail below.  
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Figure 1 Flowchart representation of the method 

 

3.1 GIS assessment of biomass and biogas potential  

GIS assessment of biomass potential is the process of using a GIS tool to create maps that 

present the distribution and density of biomass potential in a particular area. For this purpose, 

the QGIS tool [28] was used. QGIS is a free and open geographic information system tool that 

allows users to develop, analyse, edit and print geospatial data. The conducted assessment was 

implemented to obtain input data for P-Graph Studio (P-graph software). It includes several 

steps, which are described in more detail in the subsections below. 

Data acquisition and biogas potential assessment 

Residues and by-products that are located in rural regions are the raw materials (feedstocks) 

taken into consideration in this work. More precisely, the following categories can be created 

from the examined feedstocks for this work: 

• Agricultural residues (maize stover, wheat straw); 

• Manure (Cattle, pig, chicken manure); 

• By-products from the food industry (Grape pressings, sugar beet pulp). 

To assess the biogas potential, the theoretical potential of the selected feedstock must first be 

assessed. This theoretical potential is based on the ratio of residue to processed commodities 

and the amount of processed commodities. Only a portion of the theoretical potential, also 

called technical potential can be utilised for the production of bioenergy due to competition 

with other purposes (feed, land protection, etc). Hence, a sustainable removal rate was applied 

for wheat straw. This factor equals 40% for wheat straw [29]. For livestock, the theoretical 

potential is a function of the number of livestock (head) and the amount of manure produced 

annually per head.  
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Based on the theoretical potential of fresh feedstocks, a specific biogas yield from fresh 

feedstock, and the methane content of biogas, the biogas potential of the evaluated feedstocks 

is determined. Input data for the calculation of the biogas potential from wheat straw and cow 

manure can be obtained from public reports and agricultural geoportals provided by a national 

Ministry of Agriculture and the related Agencies. To assess the biogas potential from grape 

pressings and sugar beet pulp, input data can be obtained through publicly available annual 

reports. Table 1 lists the biogas yield and biogas methane content for the considered feedstocks. 

Table 1 Biogas yield and methane content of considered residues and by-products 

Residues/ by-

products 

𝒚 

(m3/tFM) 

𝒔𝑪𝑯𝟒
 

(%) 

Reference 

Wheat straw 125 52.5 [30] 

Grape pressings 160 80 [31] 

Sugar beet pulp 96 50 [32] 

Cow manure 22.1* [33] 

* In literature, the value is given for a methane yield (m3 CH4/t) 

Previous studies [34], [35]. of the authors go into a greater level of detail on this step.  

Data visualisation 

The geographic distribution of biomass potential and the distance to a possible biogas site limit 

the viability of using residues and by-products from an economic and GHG savings 

perspective. Data visualisation highly depends on the type of represented feedstocks. 

Feedstocks that are being generated at farms (manure) and in the food industry can be 

represented by a point vector layer since the production of feedstocks occurs at a specific 

location. To link the attribute (non-spatial) information on the biogas potential to spatial 

information, geocoding can be applied, which represents converting addresses into geographic 

coordinates and thus enable utilisation of the data in the GIS tool. 

On the other hand, agricultural residues occur in the wider area. A top-down approach was 

applied to visualise and evaluate the distribution of this potential, and the potential of wheat 

straw was dispersed in the areas that fall under distinct land cover classifications. Data included 

in the GIS tool can be afterwards used for map development. GIS biomass maps can visualise 

information on biomass and biogas potential and be used for distance determination and 

optimal biogas site location determination.  

Determination of optimal biogas site location 

The optimal location for a biogas plant is determined using geographic and attribute (non-

spatial) data. This biogas plant can be understood as a centralised production site that produces 

biogas from feedstock supplied by the concerned industry, farms and agricultural sites. The 

goal function of this optimisation is to minimize transport distance between a biogas site and 

concerned feedstock providers. For this optimisation, the “Mean coordinate” spatial query, 

available in QGIS was used. As the input data for the optimisation, biogas potential was used 

as the weighted factor. In a case where biogas potential is represented in both point and polygon 

vector layers, it is important to align the type of layers and merge those layers into one, which 

can be used for optimal biogas site location determination. In this work, the potential of the 

agricultural residues, initially represented in the polygon vector layer was transferred to the 

point layer by using the “Centroids” query in QGIS. The generated points can be understood 

as the collection sites of agricultural residues. 

Route assessment  



8 
 

The "Shortest path" query in QGIS can be used to examine routes (transport distance). This 

query allows the automatic assessment of the shortest (or fastest, upon user preferences) route 

between feedstock providers and biogas plants. The input data used for this assessment includes 

a network layer representing transport routes (roads) in the considered, a layer representing 

feedstock providers including the information a respective biogas potential and a layer 

including the location of the optimal biogas site location. The transport routes (road networks) 

can be imported to QGIS with the "QucikOSM" plugin. Specific transportation costs can be 

determined with equation (1): 

𝐶𝑡𝑟𝑎𝑛𝑠 =
𝑑 ∗ (𝐾𝑓𝑢𝑙𝑙 + 𝐾𝑒𝑚𝑝𝑡𝑦)

𝐵𝑏𝑖𝑜𝑔𝑎𝑠
∗ 𝑏 ∗ 𝑇 (1) 

 

Where 𝐶𝑡𝑟𝑎𝑛𝑠 stands for specific transport cost (EUR/GJ), 𝑑 for transport distance (km), 𝐾𝑓𝑢𝑙𝑙 

for fuel consumption of a full truck (L/km), 𝐾𝑒𝑚𝑝𝑡𝑦 for fuel consumption of empty truck 

(L/km), 𝑏 for fuel price (EUR/L), 𝐵𝑏𝑖𝑜𝑔𝑎𝑠 for biogas potential of transported feedstock (GJ) 

and 𝑇 for transport cost correction factor. In this work, we used the assumption that T equals 

3, which means that the cost of fuel is one-third of the total transport cost.  

3.2  Optimisation of biomass supply network by P-graph 

Due to the combinatorial nature of the problem, biogas production can be accomplished by a 

wide range of alternative structures. The determination of the optimal network structure is most 

frequently referred to as process-network synthesis (PNS) flowsheet design. The P-graph 

method is a graph-theoretical approach used for solving PNS problems [36]. Hence, for this 

step, the P-graph-based algorithms and the concomitant software (P-Graph Studio) will be 

used.  

3.2.1 P-graph studio and P-graph based algorithms 

P-graphs are bipartite graphs, each comprising material nodes (M) and operating unit nodes 

(O) and arcs between them. Determination of the feasible structures will be performed in three 

major steps.  

In the first step, the maximal structure of feasible solutions for biogas production is developed. 

The maximal structure comprises all the combinatorically feasible structures capable of 

yielding the specified products from the specified raw materials. The feasible solution structure 

generated by process-network synthesis must have several basic features that are taken as 

axioms, the introduction of which improves the efficiency of the combinatorial search during 

the process. In the P-graph-based methods, the algorithm MSG (Maximal Structure 

Generation) yields the maximal structure, i.e., the superstructure, for the Process Network 

Synthesis (PNS) problem. MSG Algorithm is a polynomial algorithm based on the axioms 

which define representations of the final product, interim products, raw materials, operating 

units and arcs. Those axioms are explained in detail by Friedler et al. [37]. The maximal 

structure will be analysed in the second step. Here, algorithm SSG (Solution Structure 

Generation) will be used for the generation of all the solution structures representing the 

combinatorically feasible flowsheets from the maximal structure. Algorithm SSG 

systematically and combinatorically selects a series of active sets and carries out decision 

mappings. Finally, ABB (Accelerated Branch and Bound) algorithm will be used to generate 

the n-best feasible solution structures. Algorithm ABB is a branch and bound algorithm for 

solving combinatorial problems. It traverses the maximal structure, keeping track of all partial 
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solutions in corresponding tree branches and bounding until it finds a branch whose objective 

function is better than the current best solution. 

3.2.2. Biomass supply network design 

The first step in creating a P-graph for a biomass supply network is to identify the potential 

feedstocks that can be used in the considered area and to map out the transportation network. 

Those data (type of feedstock, technical potential, biogas potential transport distance) were 

exported from the GIS tool in the previous steps.  

Material nodes are representing raw materials (wheat straw, grape pressings, manure and sugar 

beet pulp), interim materials and the final product (biogas). Operating unit nodes are 

representing biomass transport, biomass processing and anaerobic digestors. Anaerobic 

digesters are enclosed structures where the anaerobic breakdown of raw material (feedstock) 

takes place. The biomass supply network developed in this paper is presented in simplified 

form (for only one input raw material) in Figure 2. 

 

Figure 2 PNS network of the utilisation of wheat straw for biogas production 

 

Elements included in the PNS network are presented in Table 2. 
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Table 2 P-graph representation of elements included in the PNS network 

Element 
P-graph 

representation 

Feedstock sites: Cattle farm (CF)/ Wineries (W)/ Sugar factory (SF)/ 

Wheat straw collection site (WS) 

 
Intermediate products: Transported biomass/Processed biomass 

Auxiliary products: Maximal allowed CO2 (Max CO2), Summarised CO2 

generation (CO2_Aux), Summarised Biogas production (Biogas_Aux)  

Operating units: Transport; Pre-processing: No pre-treatment/ Grinding 

and bailing/ Alkali pre-treatment; Anaerobic digestion (AD) 

Auxiliary units:  CO2 limitation (CO2 limit)/ Biogas limitation (Product) 
 

Final products: Biogas/ Generated CO2 (CO2 gen) 

 
 

As can be seen from Figure 2 PNS network developed for utilisation of considered feedstocks 

(here wheat straw was taken as an example) includes two main streams- stream of biomass and 

stream of CO2. In the context of biomass stream, it refers to the feedstock that is being 

transported, processed and utilised in an anaerobic digestor for biogas production. In the 

context of CO2 streams, it refers to the emissions associated with the transport and processing 

of biomass, as well as the emissions associated with the biogas in use (here represented as 

emissions associated with anaerobic digestor). When developing CO2 streams special attention 

was taken to ensure that all GHG emissions (including CO2 and non-CO2 emissions) are 

covered and assessed in line with the method defined in Directive 2018/2001 [38]. This ensures 

the compliance of resulting structures (optimal and suboptimal) with 80% GHG savings 

defined in Directive 2018/2001 to be legally binding for biogas sites starting operation from 

2026. As a threshold, the value of 16.95 gCO2/MJ biogas net emissions is used in the model. 

The stages in biomass and CO2 streams are represented in red squares in Figure 2. All of those 

stages include operating units, while the resulting outputs are represented as interim materials 

except in the case of biogas, which is represented as the final product. Here, it is interesting to 

highlight part of the PNS network that represents the processing stage and part of the PNS 

network representing CO2 limitation. In the processing stage for wheat straw three options are 

represented- no processing (only bailing at the field is included here), grinding and alkali pre-

treatment (CaO). Implementation of one of those three options leads to different biogas yields 

obtained from the concerned feedstocks. As presented by Van Fan et al. [24], grinding will 

result in a 10% enhanced biogas yield of lignocellulosic waste, while alkali pre-treatment 

would lead to 59% higher biogas yield compared to the option without pre-treatment. On the 

other hand, grinding and alkali pre-treatment increases the cost of the pre-processing and 

associated GHG emissions. Those ratios are presented in arcs for the representing processing 

options of biomass stream. As expected, the cost and associated GHG emissions are the highest 

for alkali pre-treatment. For cases like this, where final cost and total GHG emissions depend 

on numerous factors, it is very beneficial to conduct a P-graph optimisation. Finally, it is 

important to note that the biogas potential of feedstocks refers to the reference biogas yield (in 

a case where there is no pre-treatment) and not the energy value of the feedstock composed in 

the chemical composition of the feedstock.  
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Part of the PNS network representing CO2 limitation sets the threshold for GHG generation 

(and resulting savings) of the production of biogas and its use. For this purpose, two auxiliary 

products (intermediate materials) are included in the PNS network design- CO2_Aux and 

Biogas_Aux. The maximal flow of those two auxiliary products is set to zero, indicating that 

they are completely consumed. As can be seen from Figure 2, CO2_Aux summarizes all of the 

G emissions generated by processes represented by operating units. Biogas_Aux is used for 

setting the threshold (maximum) on GHG emissions that the use of fuel (biogas) can generate 

to be in line with the GHG savings. This limit is represented in PNS Network as Max_CO2. In 

case if during the optimisation process, CO2_Aux emissions are higher than Max_CO2 

emissions, the P-Graph Studio makes a new iteration to find a structure whose emissions are 

lower than Max_CO2. 

The cost of a PNS network includes the sum of the cost of the raw materials and the cost of the 

transport and processing cost. As the main objective of this work is to compare the economic 

feasibility of the structures, the cost of the anaerobic digestion was not considered here, as it is 

considered to be equal for all of the considered feedstocks. The goal function of the 

optimisation is to minimise the cost of a biogas supply network (structure). The optimal 

solution is the one which can deliver the required biogas production, for a minimal cost and by 

staying below the permissible limit on GHG production. In addition to an optimal solution the 

n- best solutions will be ranked.  

3.2.3 Multi-period P-graph Optimisation 

To incorporate the seasonal variation of biomass supply and biogas demand during the year, 

the model was extended to multi-periods. The multi-period P-graph modelling allows dividing 

a year into custom-selected periods of time, which can be of arbitrary length. A multi-period 

optimisation approach, provides more reliable data compared to a single-period model, as it 

takes into account fluctuations of inputs (feedstocks) supply during the year, as well as 

differences in output (biogas) demand throughout the year. For the considered problem, periods 

are selected based on the availability of considered feedstock types. Hence, months with equal 

feedstock supply are grouped into the same period. The multi-period extension was 

implemented by configuring the Multiperiodic settings of the PNS network using P-Graph 

Studio. 

4. Case study 

The presented method was demonstrated in the case study of the rural area of Osijek-Baranja 

County. The county is situated in the northeastern part of the country and has intensive 

livestock production and use of land for agricultural production. Figure 3 represents the sites 

and agricultural land considered in this case study. 
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Figure 3: Case study sites and agricultural land 

For the feedstock cost, the input data from Table 3 were used.  

Table 3 Specific feedstock cost 

Feedstock Cattle manure Grape pressings Sugar beet pulp Wheat straw 

Cost (€/t) 5 5 25 [39] 25 [40] 

 

5. Results 

According to the method provided in the section above, the biogas potential from wheat straw, 

manure, grape pressings, and sugar beet pulp was determined for the farms, wineries, sugar 

factories, and wheat straw collection sites. The spatial distribution of biogas potential is 

presented in Figure 4. 
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Figure 4: Biogas potential 

The optimal location for the biogas site was defined based on the locations of feedstock 

suppliers with the highest biogas potential. In accordance with the optimal location, the 

transport distance between industry/farm/collection sites and the optimal location of the biogas 

site was calculated as represented in Figure 5.  

 

Figure 5 Transport road route and optimal biogas site location 

In accordance with the resulting GIS layer (Figure 5), the P-graph representation and the 

maximal structure are developed. The data set obtained with QGIS includes biogas potential 
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and transport distance for 18 feedstock-providing sites. Table 4 lists sites included in the P-

graph representation and the transport distance between each feedstock-providing site and 

biogas site.  

Table 4: P-graph legend and transport distance 

Site Cattle farm Winery 

Abbreviation CF1 CF2 CF3 CF4 W1 W2 W3 W4 W5 

Distance (km) 9 16 21 8 8 8 17 15 19 

Site Sugar 

factory 

Wheat straw collection site 

Abbreviation SF WS1 WS2 WS3 WS4 WS5 WS6 WS7 WS8 

Distance (km) 26 32 17 18 24 14 1 12 16 
 

The P-graph representation of the maximal structure of the case study is represented in 

Figure 6. As described in the method, the material nodes are represented by raw materials 

(manure, industrial by-products and agricultural residues) and the final product (biogas). 

Operating unit nodes are representing anaerobic digestors. 
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Figure 6: P-graph representations of the maximal structure of the case study 

Four groups of feedstock providers can be recognised in the maximal structure. Those are 

wheat straw collection sites (upper left corner), cattle farms (bottom left corner), sugar factory 

(bottom right corner) and wineries (upper right corner). As can be seen in 

Figure 6, all biomass streams lead to one final product (biogas), as this paper considers one 

site as a biogas production site, while CO2 streams are set to define CO2 generated by each 

feedstock group.  
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As described in the Method section, based on maximal structure, all feasible structures were 

defined. For the optimal solution, the objective was to minimise the cost of the biomass supply 

network and to limit the associated GHG emissions below the given threshold. This was done 

for two cases, both having the required biogas production of 120,000 GJ/y, but in the first case 

the optimisation is performed on the annual level, while in the second case, the multiperiod 

approach was implemented to include the seasonal variation of feedstock supply. The biogas 

production of 120,000 GJ corresponds to the production of anaerobic digestors which deliver 

biogas to CHP with 1.5 MWel. 

The optimal structure for annual biogas production of 120,000 GJ/y is presented in Figure 7. 

 

Figure 7: The optimal structure for annual biogas production of 120,000 GJ/y 

The cost of the biomass supply network (including feedstock and transport costs) is 292,016 

EUR. This equals 2.43 EUR/GJ. The data from the optimal structure are presented in Table 5, 

to improve the visibility of the numbers presented in Figure 7.  

Table 5 The optimal structure for annual biogas production of 120 000 GJ/y 

 

Abbreviation CF1 CF4 SF1 W1 W2 W3 W4 W5 

Delivered feedstock 

(GJ) 

28,810 9,821 76,230 45 4,549 227 91 227 

 

As can be seen from the results, the model first selects the wineries and sugar factory, after that 

cattle farms and finally wheat straw. It is interesting to see that the model would select sugar 

beet pulp prior to the manure from the further farms, as feedstock cost is lower for manure. 

The reason for this selection is the relatively low bulk density of the biogas potential of manure, 



17 
 

compared to the bulk density of a biogas potential of sugar beet pulp. Hence, higher transport 

may surpass the difference in feedstock cost.  

GHG emissions linked to each stage of the production and use of biogas are assessed. 

Contribution to GHG emission generation is presented in Table 6 by each feedstock group, as 

well as the GHG savings compared to the fossil fuel comparators (for both heat and electricity). 

 

Table 6 GHG emission generation- case 1 (biogas production 120,000 GJ) 

Feedstock 
Wheat 

straw 
Manure 

Sugar beet 

pulp 
Grape pressings 

Biogas produced from 

feedstock (GJ) 
- 38,631 76,230 5,139 

Associated GHG emissions 

(kg CO2eq) 
- 520,923 1,018,430 68,769 

Associated GHG emission 

savings  

(kg CO2e) 

- 4,143,757 - - 

Neto GHG emissions - -3,622,834 1,018,430 68,769 

Specific GHG emissions 

(kg CO2eq/GJ) 
- -93.8 13.36 14 

GHG savings compared to 

fossil fuel comparator for 

heat, Case 1, closed digestate 

- 210.70% 84.25% 83.49% 

GHG savings compared to 

fossil fuel comparator for 

electricity, Case 1, closed 

digestate 

- 165.35% 90.70% 90.26% 

 

As can be seen from the specific GHG emissions presented in Table 6, GHG emissions are 

below the threshold (which is set to 16.95 kg CO2/GJ biogas), which can be considered as a 

confirmation that the developed model presented as feasible structures only those which fulfil 

GHG savings.  

Integration of GHG emissions limitation, in line with Directive 2018/2001, represents an added 

value and a step beyond the current state of the art in P-graph optimisation. To enhance the 

understanding of GHG emission limitation and improve the visibility of Figure 7, part of the 

PNS network (for the case of optimal structure) whose function is to limit GHG emission is 

presented enlarged in Figure 8.  
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Figure 8 GHG emission limitation in PNS network (optimal structure) 

 

For the given example, the selected feedstock group is grape pressings. CO2_Aux is an 

auxiliary node represented as an interim product, whose main objective is to summarise GHG 

emissions that occur in biogas production and use lifecycle. This value equals 69 340.9 kg/y in 

Figure 8. The obtained value is then compared with the maximal allowed GHG emissions. The 

maximum allowed GHG emissions are calculated based on the biogas generation (GJ), 

obtained from the auxiliary node Biogas_Aux, which is multiplied by the specific limitation of 

GHG emissions per GJ of biogas. This value equals 87106.05 kg/y in Figure 8. Those two 

values meet at note Max_CO2. For the case where GHG emissions that occur in a biogas 

lifecycle are higher than the maximum values, the model makes a new iteration and searches 

for a new economically optimal structure whose GHG emissions are below the given limit.  

To enhance the accuracy of the results, the seasonal aspect of biomass production was 

integrated into the model. To integrate this, a year was divided into several periods, each 

representing certain months. The list of periods, corresponding months and generated types of 

biomass in a specific period is listed in Table 7. 

 

Table 7 The list of periods with corresponding biomass generation 

Period/ 

month 

1/  

January-

May 

2/ 

June-July 

3/ 

August 

4/ 

September 

5/ 

October-

November 

6/ 

December 

Wheat 

straw 
NO YES NO NO NO NO 

Manure YES YES YES YES YES YES 

Grape 

pressings 
NO NO NO YES NO NO 

Sugar beet 

pulp 
NO NO NO YES YES NO 

 

For each considered period, the assumption is used that biomass available for biogas production 

is the one generated in the specific period (months). There is a threefold reason for this. The 

first one is that some of the considered feedstock can not be stored for a longer period of time, 

due to potential changes in feedstock conditions, which could result in the adverse performance 

of biogas production. The second is that seasonal feedstock storage may result in additional 

methane emissions generated during the storage period, which could result in exceeding the 
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threshold of GHG emissions, due to the high global warming potential of methane. The final 

one is the cost of the investment and maintenance of the seasonal storage. 

For the considered biogas production, in case the required biogas production exceeds the biogas 

potential contained in the biomass, the assumption was used that this gap will be covered with 

the wheat straw, due to favourable storage properties. Required biogas production, for the case 

of the annual production of 120, 000 GJ is presented in Table 8. 

 

Table 8 Required biogas production in the concerned periods 

Period/ 

month 

1/  

January-

May 

2/ 

June-July 

3/ 

August 

4/ 

September 

5/ 

October-

November 

6/ 

December 

Required biogas 

production (GJ) 
55,848 19,029 0 11,096 22,561 11,466 

 

As can be concluded from Table 8, annual maintenance of the biogas site is scheduled for 

August. The optimal structure for each period is presented in Figure 9, Figure 10, Figure 11, 

Figure 12 and Figure 13. 

 

 

Figure 9 Optimal structure of biogas production from January until May 
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Figure 10 Optimal structure of biogas production in June and July 
 

 

 

 

Figure 11 Optimal structure of biogas production in September 
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Figure 12 Optimal structure of biogas production in November and October 
 

 

 

Figure 13 Optimal structure of biogas production in December 
 

The values on delivered feedstock presented in optimal structures (Figure 9-Figure 13) 

provided for each period are shown in Table 9, to improve the visibility of the numbers. 

Table 9 The summary of optimal structures determined for each considered period 

 Delivered feedstock (GJ) 

 January- 

May 

June-

July 

August September October- 

November 

December Total 



22 
 

WS5 15,051 3,938 - - - 3,196 22,185 

CF1 16,368 6,547 - - - 3,274 26,189 

CF2 8,593 3,437 - - - 1,719 13,749 

CF3 2,864 1,146 - - - 573 4,583 

CF4 4,092 1,637    818 6,547 

SF1 - - - 5,957 22,561 - 28,518 

W1 - - - 45 - - 45 

W2 - - - 4,549 - - 4,549 

W3 - - - 227 - - 227 

W4 - - - 91 - - 91 

W5 - - - 227 - - 227 
 
 

The optimal structures of periods from January-May, June-July and December are very similar. 

Although in the second period, there is a significant biogas potential of the wheat straw sites, 

the model will select manure, even from further farms. The total values of delivered feedstocks 

significantly differ from the first case where the optimal structure was defined on an annual 

basis. Compared to the first case where the model did not commit the wheat straw sites, in the 

second case wheat straw contributes to 18.3 % of biogas production. Furthermore, in the second 

case, the contribution of manure is significantly (34%) higher, even from the more distant 

farms, which would result in higher transport costs. On the other hand, most of the potential of 

sugar beet pulp was untapped in the second case (63%). Those chances negatively affected the 

total cost of the biomass supply network, which equals 733,684 € (6.11 €/GJ biogas). The 

increase in biomass supply cost is, to some extent, an expected result, as during the periods in 

which feedstock with high energy density and low prices were not available, the model 

committed the sites with higher transport distances and/or sites with higher feedstock and 

processing costs. Furthermore, although the multi-period approach resulted in less favourable 

results in terms of cost, it can be stated that this approach results in more accurate results and 

provides insights into the sensitivity of the cost of biomass supply network for the case where 

economically favourable feedstocks are not available, since they are being generated in a very 

short period of time during the year.  

As for the first case, the contribution to GHG emission generation, as well as GHG savings 

compared to fossil fuel comparators, is presented in Table 10 by each feedstock group. 

 

Table 10 GHG emission generation 

Feedstock Wheat straw Manure 
Sugar beet 

pulp 

Grape 

pressings 

Biogas produced from feedstock 

(GJ) 
35,275 51,068 28,518 5,139 

Associated GHG emissions (kg 

CO2eq) 
550,778 706,184 381,001 69,341 

Associated GHG emissions 

savings  

(kg CO2eq) 

- 5,477,813 - - 

Net GHG emissions  

(kg CO2eq) 
550,778 -4,771,628 381,001 69,341 

Specific GHG emissions 

(kg CO2eq/GJ) 
15.61 -93.44 13.36 13.49 
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GHG savings compared to fossil 

fuel comparator for heat, Case 1, 

closed digestate 

89.12% 210.22% 84.25% 84.08% 

GHG savings compared to fossil 

fuel comparator for electricity, 

Case 1, closed digestate 

81.57% 165.06% 90.70% 90.60% 

 

As in the first case, specific GHG emissions were below the given threshold, which can be 

considered as a confirmation that the model successfully limits the GHG emissions in both 

single-period optimisation and multi-period optimisation. It is also interesting to note that, due 

to the higher contribution of manure to biogas production, the net GHG emissions are 

significantly lower for the second case. As mentioned earlier, when defining the optimal 

structure, P-graph Studio defines and ranks sub-optimal structures as well. Hence, the results 

could be used for the development of a Pareto front that would define both the cost of the 

structure and the generated GHG emissions.  

The developed model does not automatically prioritize the structures with the lowest GHG 

emissions, as it considers GHG emissions savings as constraints, not as the variable to be 

minimised. Although this may be considered as the limitation of the model, the minimisation 

of the GHG emissions was not selected as the target group of this model is the biogas industry, 

whose objective is commonly to fulfil the requirements given by the legislation and to minimise 

the cost of the biomass supply network. However, in case if biogas industry would receive 

some additional incentive to future reduce GHG savings, or in general decides to achieve 

savings higher than the given threshold, the developed model easily allows the comparison of 

the cost and GHG emissions of optimal and sub-optimal structures, thus enabling efficient 

assessment of trade-offs. Based on the obtained results, it can be considered that for the case 

of the minimisation of GHG emissions, the model would prioritize manure as the feedstock 

(even from more allocated farms), due to the high GHG emission savings resulting from the 

improved manure management.  

As the developed model determined economically optimal and sub-optimal structures, 

simultaneously limiting GHG emissions in both single-period optimisation and multi-period 

optimisation, it can be stated that the hypothesis of this work is confirmed.  

6. Conclusions 

This paper presents a novel multi-period P-graph-based model for optimizing biomass supply 

networks, which goes a step further in integrating environmental constraints in the PNS 

network. The model developed in this work enables the economical optimisation of a biomass 

supply network, while simultaneously limiting the CO2 emissions that the biomass supply 

network can generate, in line with the EU Directive 2018/2001 requirements.  Furthermore, 

through the extension of the model to multi-periods, the developed model considers the 

seasonality of biomass supply during the year. The study also demonstrates the linkage between 

GIS mapping and route assessment with the graph theory approach for biomass supply chain 

optimization. The presented model was applied to the biogas production from agricultural 

residues, livestock and industrial by-products, including wheat straw, sugar beet pulp, grape 

pressings and manure. 

The model was tested in a case study of a rural area in Osijek-Baranja county, which resulted 

in the determination of optimal and sub-optimal economical structures that fulfil GHG savings 
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requirements. The results indicate that the model prioritizes feedstock from wineries and sugar 

factories, followed by cattle farms and wheat straw. Moreover, the specific cost of the biomass 

supply network (feedstock, processing and transport) was calculated to be 2.62 EUR/GJ in the 

case of optimisation on an annual level and 5.1 EUR/GJ in the case of multi-period 

optimisation, due to higher demand feedstocks with higher transportation, processing and/or 

feedstock cost. Overall, the paper confirms the hypothesis that an economically optimal 

residual biomass supply network for biogas production that meets sustainability and 

greenhouse gas emissions saving criteria can be determined with the P-graph approach. Future 

research could consider expanding the scope of the analysis by incorporating a wider range of 

feedstock varieties. 
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