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ABSTRACT 54 

Long term-energy planning has gradually moved towards finer temporal and spatial 55 
resolutions of the energy system to design the decarbonization of the society. However, 56 
integrated assessment models (IAMs), focusing on a broader concept of sustainability 57 
transition, are typically yearly-resolution models which complicates capturing the 58 
specific supply-demand dynamics, relevant in the transition towards renewable energy 59 
sources (RES). Different methods for introducing sub-annual information are being used 60 
in IAMs, but the hourly representation of variable RES remains challenging. 61 

This article presents a method to translate the main dynamics of an hourly-resolution 62 
energy model into a yearly-resolution model. Here we test our method with the current 63 
European Union region (EU-27) by configuring and applying the hourly-resolution 64 
EnergyPLAN. Multiple linear regression analysis is applied to 174960 simulations (set 65 
by varying 39 inputs by clusters and reaching 100% renewable systems), relating the 66 
adjusted capacity factors of the technologies as well as the variation of electricity demand 67 
and natural gas consumption as a function of the options installed to manage the variable 68 
RES. The obtained results allow validation of the developed approach, which shows to 69 
be flexible and easily generalizable enough to be applied to any couple of hourly and 70 
annual-resolution models and/or country. 71 

 72 
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 76 

1. INTRODUCTION 77 

The European Union (EU) stipulates that achieving a climate-neutral economy will allow 78 
the EU to evolve into an equitable and sustainable society with a cutting-edge and vibrant 79 
economy [1]. To achieve the goals, remarkable progress has been made by expanding the 80 
exploitation of renewable sources of energy, “from a technology, resource assessment, 81 
and system design perspective’ [2], primarily due to their reduced cost of electricity 82 
generation – particularly wind and solar technologies – and ongoing research to improve 83 
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their characteristics [3]. However, fostering the use of renewables to reduce the annual 84 
net carbon footprint radically changes the traditional technical and market operations of 85 
the energy system due to their variable nature. Especially, the power system needs an 86 
adaptation to new technical [4][5], economic [6]–[8] and regulatory conditions [9], 87 
among others [10]. Last but not least, dispatchable renewables could relax a situation by 88 
imitating the traditional dispatchable fossil-fuelled technology [11]. 89 

To mathematically test and assess national and international policies in the context of the 90 
energy transition, it is fundamental and calls for adequate computer tools to design it. 91 
From the set of models available, the IAMs have been traditionally (since the 1970s) used 92 
to increase the awareness of the synergies between elements. Summarizing an 93 
introduction written by Nordhaus [12], an IAM may be defined as a computational shared 94 
framework of applied knowledge (effective understanding) to realistically represent the 95 
internal structural behavior of the human-Earth system and assess the best policies (i.e., 96 
those causing the desired effects) to be implemented in our society. The interdisciplinarity 97 
covers diverse fields from natural sciences and economics to sociology and law, and 98 
researchers propose their modeling in different programming languages (GAMS – 99 
Generalized Algebraic Modeling System – [13], Vensim [14]), modeling approaches 100 
(general and partial equilibrium [15], system dynamics [14], agent-based [16]) and, more 101 
recently, open platforms (GAMS/Java/Python/R) to further facilitate the collaborative 102 
work and communication between the database, the graphical user interface, and the 103 
analysis of results that scientists and policy makers  claim for so much [17]. J. Weyant 104 
classifies the contributions of IAM in the literature about human development and energy 105 
transitions [18]. In this reference, the author states that “IAMs differ tremendously in their 106 
level of detail and the complexity and interconnections they consider”. Given the scope 107 
and influence in the Intergovernmental Panel on Climate Change (IPCC) reports (working 108 
group 3 [19]), an ethical discussion is present to support the transparency and high 109 
standards of science in this influencing field [20][21]. 110 

For policy makers to assess energy transitions, variable renewable energy sources – wind 111 
onshore, wind offshore, solar-PV, run-of-river hydropower, wave, and tidal marine power 112 
– as well as the energy demand requires enough temporal detail in IAMs. The next 113 
subsection briefly discusses a literature review of the methods used in the IAMs to 114 
represent the renewable and demand variabilities in the power system (summarizing 115 
tables in APPENDIX A, which also includes the acronyms of the referenced models). 116 
Then, additional paragraphs about machine learning methods introduce the developed 117 
method with which this article aims to contribute to the field. 118 

Large models such as IAMs face two overlapping problems to have a computationally 119 
and tractable hourly analysis of the energy system in the code. On the one hand, the lack 120 
of databases to study the fluctuations in time and space, for both supply and demand sides, 121 
and considering interannual variabilities [22]. On the other hand, the computational cost 122 
should be as low as possible to be used as a manageable product by policy makers and 123 
stakeholders. Consequently, the methods should be evaluated to have a manageable 124 
product while retaining the relevant details. Stephan Pfenninger [22] has evaluated some 125 
techniques to reduce the time resolution of this problem, however, “there is no one-size-126 
fits-all approach to reduce time resolution while also covering long-term variability”.  127 
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1.1. Approaches in IAMs 128 

The oldest type of method is related to time slices. These calculate the variables of interest 129 
for some representative days, as windows of the high resolution of the year, to then 130 
extrapolate the results standardly to the whole year. Time slices were pioneer methods to 131 
represent the variability of renewables and load demand in IAMs [23]. 132 

Similarly, the time-aggregation methods start with the lowest scale (e.g., 8760 hours) to 133 
then create composite results at the yearly level. Nowadays, the most used is based on the 134 
residual load duration curves (RLDC) [24]. The core idea of the RLDC approach is the 135 
calculation of the residuals by subtracting, hour by hour, the production of the non-136 
dispatchable renewables from the electricity demand. After that, the rest of the 137 
technologies are allocated to completely match demand and supply, according to some 138 
restrictions such as the maximum gradient of the curve and the maximum capacity factor 139 
of the power units. However, the dynamics over consecutive hours are lost when residuals 140 
are sorted to create the curve from which electricity is allocated in the market. This 141 
produces some drawbacks such as the loss of information about hourly ramps up and 142 
down in the capacities, or the representation of seasonal variables. The RLDC method – 143 
as well as other stylized approaches – is based on parametric equations, an aspect that 144 
makes it computationally faster than soft- and hard-linking. The speed of doing 145 
calculations exponentially increases in relevance when IAMs deal with several modules, 146 
regions, and decades of simulation. The collection of features requires time balancing 147 
across modules to deliver a manageable product. Years later, some of the original authors 148 
studied how this method had influenced the IAM field, showing positive feedback in 149 
AIM/CGE, IMAGE, MESSAGE, POLES, and REMIND, at different levels of 150 
importance, to “describe the fundamental dynamics of the power sector and the effect of 151 
VRE” [25]. 152 

A different perspective may be enclosed within the so-called stylized approach, which 153 
consists of a set of equations to deliver results as similar as possible to the original model. 154 
The last one with a greater definition of the problem. The materials to calibrate the 155 
equations are the own results of the model to be simplified, so the information is 156 
condensed to have implicit knowledge in the upper-scale model. 157 

Finally, the concept of soft- and hard-linking means the coherent joining of two or more 158 
codes to capture different details present in their frameworks, to increase the strength of 159 
the assessment. Soft and hard linking differ in the inexistence (soft) or existence (hard) 160 
of feedback communication while the simulation is running. The five integrated 161 
assessment models working with the shared socioeconomic pathways (SSPs), two novel 162 
IAMs (MEDEAS, WITCH-GLOBIOM), and an energy model (POLES) have been 163 
analyzed in this article (APPENDIX A) to overview the representation of variable RES 164 
in three aspects: potential production, power system operation, and flexibility options 165 
considered. 166 



5 
 

A heterogenous point of view has developed the methods to capture the technical 167 
structure, the economic structure, or a combination of two to represent the power system. 168 
POLES has evidenced greater detail than the other models. A recent comparative analysis 169 
[26] between simplified approaches and an hourly energy model concludes that IAMs 170 
could be criticized for underestimating fundamental effects when calculating the carbon 171 
removal demand, especially in the power system, given the large role of the variable 172 
renewables in most of the scenarios. The effects were hourly studied by Hoevenaars et al. 173 
[27], however, the research could not recommend a specific time unit in general. Very 174 
recently, another methodological review [28] concludes that the accuracy of time-series 175 
aggregation, i.e., to represent a period selection through temporal resolution reduction, is 176 
higher than approaches based on time slides. Even if both achieve a great reduction of 177 
computational cost, the first type of method delivers negligible differences in the energy 178 
mix, cost, emissions, and curtailment for resolutions below the 8 hours. Even if both 179 
achieve a great reduction of computational cost, the first type of method delivers 180 
negligible differences in the energy mix, cost, emissions, and curtailment for resolutions 181 
below the 8 hours. However, the time steps were included in a potential series of ratio 2, 182 
i.e., 2 hours, 4 hours, and 8 hours. So, the Authors did not calculate the optimal resolution 183 
time according to energy system characteristics. 184 

On the one hand, soft-linking has been proved in OSeMOSYS (Open Source Energy 185 
Modelling System), a long-term planning energy model, [29]. On the other hand, the 186 
results of previous research with TIMES-PLEXOS (where TIMES means The Integrated 187 
MARKAL-EFOM System) allowed for implementing operational constraints to enhance 188 
OSeMOSYS [30]. For the same time scale (year), the enhanced OSeMOSYS model 189 
achieved a better allocation of the supply capacities (21.4%), and appreciable changes in 190 
the scenario to 2050 (14.1% higher capacity and 14.5% higher investments than the 191 
starting version of the model) [31].  192 

Pietzcker et al. [25] have cross-validated 18 features of the power system present in six 193 
IAMs. The reference was REMIx, an hourly, nodal, and economic-based optimization 194 
power system model ([32]). The historical “utilization effect” (reduction in the capacity 195 
factor of the installed thermal, hydro, and storage power units) was well-captured by 196 
REMIND 1.6. All the IAMs underestimated the curtailment (figure 4, left, in [25]) while 197 
revealing 40-50% higher storage capacity. 198 

The only study of hard-linking between an IAM (MESSAGEix-GLOBIOM ) and a power 199 
system model (PLEXOS-World) has been recently published [33]. Key mechanisms of 200 
this framework are the temporal demand downscaling, the special capacity downscaling, 201 
a long-term capacity expansion, and the integration of inter-regional trade. However, the 202 
energy models are usually more developed. For instance, TIMES ([34][35]) and 203 
EnergyPLAN, both long-term planning energy models, have been combined to study the 204 
continental Portugal energy system for the period 2005-2050. Compared to TIMES 205 
without EnergyPLAN, the integration of electricity overproduction was around 79% 206 
higher and the results showed significant differences in the requirements of storage [36]. 207 
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Also to TIMES, PLEXOS has been connected to improve the reliability of the Irish power 208 
system results [37]. This power system model is based on linearised real power flows and 209 
assumes that voltages are all 1 p.u. [38], so every year simulated with PLEXOS cost more 210 
than five hours, while 40 seconds for a year of TIMES. However, 8% of curtailment and 211 
21% of gas consumption for combined-cycle units are estimated by TIMES-PLEXOS, 212 
where TIMES was estimating 0% for both outputs (Table 5 of the reference).  213 

Table A. 1 summarizes the methods used in IAMs. POLES seems to be the most complete 214 
IAM. This model also contains the highest number of flexibility options (Table A. 2). The 215 
back-up facilities to guarantee the supply are represented in all the IAMs, but the options 216 
so-called demand-side management, vehicle-to-grid capacity, and power-to-heat are only 217 
in this one. Technically, the soft-linking between MESSAGEix and GLOBIOM achieves 218 
powerful details in the power system to assess the reliability of real power flows in the 219 
grid. 220 

 221 

1.2. Machine learning algorithms  222 

Consequently, the issue is therefore rooted in the hourly resolution, which can be achieved 223 
by an energy model. So, this paper aims to offer a stylized mathematical approach to 224 
represent the connection between inputs and outputs while considering as many hourly 225 
effects provoked by variable RES in the energy system as possible, easy to be interpreted 226 
and assuming a low or inexpensive computational effort, and easily integrable into 227 
different codes and frameworks. 228 

The developed method of this work consists of performing combinations in the energy 229 
model, using the results to condense the hourly information into annual relationships. 230 
Peter Harrington [39] introduces the machine learning world to solve a broad set of 231 
problems. Since the labels and target values of inputs and outputs are known, the 232 
searching is focused on the so-called supervised learning tasks, and especially, the 233 
regression models. They avoid calls to external functions in the IAM so are faster in 234 
solving the problem. In addition, the weights or coefficients in the equations may be 235 
pedagogical when interpreting which flexibility options influence more or further 236 
integrate the VRES generation into the system (deeper decarbonization). The main 237 
contribution of this work is therefore to test a new fast and straightforward method for 238 
the IAM field. 239 

To balance the compromise between accuracy and computational cost, as well as to take 240 
advantage of the available data, we have selected the hourly EnergyPLAN model [40] to 241 
represent the EU-27 region as a case study. EnergyPLAN is described in detail by H. 242 
Lund et al. in [41]. The trajectory of this model to analyze energy systems and propose 243 
indicators to assess at different levels – energy, economy, finances – of the energy 244 
transition has been recorded in the review written by P.A. Østergaard [42]. From the 245 
regression’s point of view, a supporting feature of EnergyPLAN is the fact that this model 246 
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only contains linear equations, so the method would already be enclosed into multiple 247 
regression models to reproduce the addition of several independent effects, e.g., the 248 
capacity expansion of solar and wind, or some flexibility options such as power-to-X 249 
technologies. 250 

The structure of this paper is the following: first, the method is explained in detail (section 251 
2). Next, the goodness of the method is shown in the results (section 3). Third, a 252 
discussion on the advantages and limitations of the research is carried out in section 4. 253 
Finally, some conclusions are written to summarize the key ideas and further work on this 254 
line of research in section 5. 255 

 256 

2. METHODS 257 

In this paper, the authors develop a method that should enable energy modelers to capture 258 
the interannual variability of VRES and the management of this variability through 259 
different flexibility options and represent them in IAMs, which usually have an annual 260 
temporal resolution. The method is based on the idea of using statistical indicators, such 261 
as the capacity factor (CF) of different technologies as a proxy for the hourly operation 262 
of a certain energy system. The temporal resolution of one hour is chosen, since, as 263 
discussed previously, it provides suitable granularity to study the operation of energy 264 
systems under different penetrations of VRES in the mix [43]. The developed method is 265 
comprised of four steps, which are graphically represented at the right of Figure 1. 266 

In the first step, suitable input data for the energy system is gathered, so that it can be 267 
adequately modeled. Secondly, for that energy system, different possible future 268 
configurations are developed, by combining and mixing the shares of various supply and 269 
demand technologies. The specific process for generating the combinations of 270 
technologies is discussed later in the text. Once these configurations are developed, as a 271 
third step, the hourly operation of that energy system is simulated for each configuration, 272 
using an hourly time-step. At the end of each simulation, several numerical indicators are 273 
calculated to quantify the capacity factor of the different technologies. In a fourth step, 274 
the multiple linear regression analysis is performed, providing a relationship between the 275 
configuration of the energy system, on the one hand, and the values of the statistical 276 
indicators, which capture the inter-annual variability, on the other hand. The detail of the 277 
different steps in the method is described at the left of Figure 1. 278 

When this method is used to generate relationships that can be used in an IAM, it should 279 
be ensured that all the technologies that are used as independent variables in the 280 
regression analysis should explicitly be represented in the IAM. In other words, care 281 
should be taken in order to ensure that the technical parameters of both models (the 282 
hourly-resolved and the annually-resolved model) are harmonized, to avoid 283 
inconsistencies. 284 
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In this paper, an input is a parameter in EnergyPLAN that is modified across 285 
combinations, while a constant is a parameter in EnergyPLAN whose value remains the 286 
same across combinations. A range is configured by the maximum and minimum values 287 
within an input can vary, so a point is a value within a range. A cluster is one input or a 288 
group of them that are modified simultaneously across combinations. Finally, a regression 289 
input is the combination of inputs selected to represent a cluster in the regression while 290 
an estimated output is the value of the cluster calculated from a regression model. 291 

The next sections explain the inputs and outputs obtained with an hourly resolution, as 292 
well as the outputs selected to be regressed. The hourly-resolution model named 293 
EnergyPLAN is used in this work [44]. 294 

The reason for the selection of MLR models is twofold. On the one hand, a modeler can 295 
use different probability distributions depending on the bounds of the response (output). 296 
On the other hand, MLR models can be implemented into any model where other 297 
advanced tools such as those coming from machine learning theory cannot. Linear 298 
relationships have been considered for simplicity to test the method, safer than nonlinear 299 
shapes when the variables run out of ranges, a situation not recommended but considered 300 
as well for fine-tuning. 301 

Supplementary materials consist of code and the data to reproduce the study. Such 302 
contents are well-structured in a Zenodo repository [45].303 
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 304 

Figure 1. Overview of the developed approach (right) and steps and sub-routines of the method presented in this article (left). Own elaboration.305 
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2.1. Design of the experiment 306 

The objective of this article is to condense hourly information into annual input-output 307 
relationships. The introduction section supports that MLR models may be one option to 308 
do it, however, data is required to train and statistically prove this assumption.  309 

The inputs and outputs of thousands of simulations with EnergyPLAN are the basis to fit 310 
the MLRs. The inputs represent technologies of interest – present in the energy model – 311 
that are going to be captured in the relational model. Thus, the selection of inputs and 312 
values per input are two crucial tasks that constitute what may be called the design of the 313 
experiment, i.e., an ad-hoc configuration of values to show variations in the outputs. 314 

The configuration is created by combinations instead of permutations since the order does 315 
not matter, i.e., each input has some values or points that are unique, and they are not 316 
exchangeable with the values of the other inputs. Also, the resolution of inputs may differ 317 
according to the interest in the technology, e.g., later we will see that clusters of wind and 318 
solar have five points, but the cluster of storage has three. Behind the explanation, the 319 
objective focuses on variable renewable technologies as those causing risky variability. 320 

Inputs from both the demand and supply sides are required to effectively represent the 321 
effect produced by the technology in EnergyPLAN. For instance, the role of power-to-322 
heat (P2H) can briefly be explained as follows: this flexible option allows for using 323 
electricity to produce heat (electric boilers) or to move heat (heat pumps) in two 324 
complementary facilities, district grids, and the agents grouped as “individual” (not grid-325 
connected). Consequently, the installed capacity of boilers and heat pumps, the fuel 326 
distribution for non-electric boilers, or the contribution of solar thermal are inputs of the 327 
supply side of the P2H option, while annual demands and hourly profiles of cooling and 328 
heating define the demand side of the option. Some simplifications are therefore 329 
addressed to avoid an excess of time when computing the combinations. This aspect is 330 
key in understanding the main limitation of the approach, i.e., the computationally 331 
feasible number of simulations. This limitation is explained in the next subsection. 332 

The hourly profiles and other variables such as conversion factors and efficiencies are 333 
included as constants, given the great climate and meteorological uncertainty (IAMs deal 334 
with decades of analysis). Other variables such as the differences in efficiencies over time 335 
can be computed in post-processing adjustments within the IAM. 336 

The application of EnergyPLAN for the objective of the research has been explained in a 337 
similar experiment where the structure of inputs is run in a multiple combination approach 338 
[46]. Such combinations are described by employing some features: name, range of 339 
values (maximum and minimum), and the number of values in the range (points of 340 
resolution). From a pre-defined condition, the scenarios achieving 100% renewable 341 
systems and intermediate situations at the hourly level are present in the data. The 342 
documentation of the version used in this study can be read in [44]. 343 

A Python script automatizes the process of creating input files, running EnergyPLAN, 344 
and saves outputs of interest for the MLR models. The clustering and pre-processing of 345 
data are done with MS Excel. Power Query software facilitates the creation of 346 
combinations as well as post-processing tasks with the results. Then, a Python code is 347 
used to run EnergyPLAN as many times as combinations are defined, translating the 348 
values of combinations into input files. Once the input files are generated, the energy 349 
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model is run, and outputs are saved and properly allocated to the next steps of the method 350 
(MLR models). The entire code can be downloaded from the Zenodo repository. 351 

Given the accessibility of data and the scale IAMs typically present, the EU-27 region as 352 
a whole has been considered to test the approach. The international interconnections of 353 
EU-27 with the rest of the world are neglected for the sake of simplicity (948 GW vs 41 354 
GW; source: Eurostat, 2019). These connections are subject to conditions that fall out of 355 
the scope of this work like policy agreements between countries or how the other 356 
countries develop the energy transition, so this uncertainty is not captured. The values of 357 
constant parameters are shown in Table B. 3.  358 

While being aware that EnergyPLAN represents an energy system with a copper-plate 359 
equivalent and may not render the geographical resolution of large energy systems in 360 
detail; in this paper, it was used also due to the simplicity of its configuration and fast 361 
running procedures, which are key having in mind the number of simulations performed. 362 
These two factors combined to enable the fulfillment of the goal which is to obtain high-363 
resolution data on the interactions between the capacities of variable renewables and 364 
flexibility options, and their influence on reaching the shares of renewable energy as well 365 
as their performance in the energy system. The level of detail lost during the aggregation 366 
of data is not insignificant but is the compromise that the modelers took to achieve the 367 
required results.  368 

To automatize the ad-hoc configuration in EnergyPLAN, a distinction between the basic 369 
(or “legacy”) electricity demand and the total electricity demand is made. The first one 370 
originated from the historical data and its projection. The second one includes the legacy 371 
demand plus all the new demands coming from flexible electricity demand (daily, weekly, 372 
and monthly), electricity for heat pumps, electric vehicles, and electrolyzers. In 373 
simulations, the basic electricity is then modified to stay at the same value in the total 374 
electricity demand. 375 

 376 

2.2. Data collection 377 

The hourly distributions of the electricity demands have been collected from ENTSO-E 378 
[47]. The distribution of heat demand has been calculated with the hour-degree method 379 
[48], which based the results on the temperature distributions and the operational 380 
characteristics of the district heating system.  381 

Synthetic hourly profiles of VRES have been created with data from the Renewablesninja 382 
website [49]. The resulting curves are further calibrated with historical data to present a 383 
realistic energy mix. The database for the calibration process was IRENA [50]. All the 384 
distributions are available in the supplementary materials of this article (Zenodo’s 385 
repository). 386 

 387 

2.3. Combinations of inputs 388 

The limitation aforementioned is mathematically rooted in combinatorial analysis. The 389 
time of computation can be approximated by the Equation 1, where 𝑡௦ is the time spent 390 
in one cycle of running EnergyPLAN and saving the results, and 𝑝௖ is the number of 391 
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points in the cluster c (from cluster 1 to cluster n). The machine used for this work is the 392 
Acer Aspire V5 552 g with AMD A10 5757 M and 8 GB of 800 MHz memory. So, the 393 
code has been successful in bringing the average time required to perform a cycle to 1 394 
second. Therefore, a maximum of 3600 cases would be run in one hour, 86400 in a full 395 
day, and so on. The time exponentially increases with the number of points and inputs. 396 

𝑡 = 𝑡௦ ∙ ෑ 𝑝௖

௡

ଵ
 Equation 1 

 397 

Once the limitation is on the table, the authors suggest grouping inputs in a clusterization 398 
based on what defines the technology represented. As consequence, all the inputs of 399 
EnergyPLAN involved in the same cluster are changed in unison with combinations. The 400 
full list of clusters with their definitions is shown in Table B. 1, in which values are placed 401 
in Table B. 2. The condition of modeling a wide range of energy systems, from 100% 402 
fossil-fuel-based to 100% renewable-based continues to be satisfied. The decarbonization 403 
of an energy system can be achieved in numerous ways. The capacities of flexibility 404 
options are then selected to enable this possibility and our estimations are described in 405 
the last column of Table B. 1. 406 

The clusters reflect when different technologies have a similar application. This is the 407 
case with stationary batteries, pumped hydropower, and rock-bed energy storage. All 408 
these technologies are similarly reproduced in EnergyPLAN, disagreeing in the available 409 
capacities, round-trip efficiencies, and economics, but not the way they operate in the 410 
system. So, given the reference scenario parameters, results can be split into different 411 
technologies (post-processing). 412 

Two criteria are followed to set up the ranges of values. First, to achieve patterns of 413 
capacity factors related to the flexibility implemented in the system. It is useful to assess 414 
the best options in the region. Second, the scenarios of carbon-neutral and 100 % 415 
renewable energy systems are included to cover all the transition options.  416 

To achieve both, the capacities of VRES technologies have to be significantly increased 417 
in comparison to the current situation. The range of wind onshore goes from 0.5 to 2.5 418 
TW (around 50% of the projected potential for onshore wind energy in EU-27 [51]), but 419 
the potential capacity is highly dependable on land-use restrictions. On the other hand, 420 
the installation of offshore wind farms has a range from 0.08 and 3.8 TW, while the range 421 
for simulations goes from 0.05 to 0.25 TW. Finally, the potential for solar-PV capacity is 422 
within the range of 0 - 1.2 TW when it only considers the investments for installations on 423 
rooftops and the brown field. This potential is smaller than the maximum (2.5 TW), but 424 
the investments into new projects on unused land should also be considered [52]. 425 

EnergyPLAN’s warnings† are saved to decide whether repeat the combinations or not. 426 
Thus, the results must finally be manually checked to ensure that errors do not arise.   427 

Some additional general ideas should be considered at this step: 428 

 
† EnergyPLAN might deliver some warnings after the simulation is run: critical excess of electricity production (CEEP), grid stability 
problem, power plant or import problem, synthetic or biogas shortage, V2G connection too small, and negative electricity 
demand. Further information in the documentation of EnergyPLAN. 
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 Inputs of EnergyPLAN can be sorted into first, second, and third spheres of 429 
influence when defining a technology. Then, the modeler can select more or less 430 
inputs to define the cluster according to the resolution looked for in the analysis 431 
of that technology. 432 

 Projections help to determine what variables should have a wider range to better 433 
consider their flexibility effects. The information on what should be considered 434 
constant also came from the projections.  435 

It is here emphasized that clusters have fixed ranges to perform the combinations, so the 436 
results are correct as long as the model does work within the extreme values of the ranges. 437 
Beyond them, the reliability of results is not guaranteed but the MLR models are robust 438 
(linear) so the error included could not be as extreme as the one committed by a nonlinear 439 
function.  440 

A total of 174960 simulations were run by a combination of 8 clusters (39 inputs, Table 441 
B. 2).  442 

 443 

2.4. Multiple linear regression (MLR) models 444 

The results that are of significant value for further advances in implementing variability 445 
effects into IAMs are the ones that represent the relationships between the level of 446 
technology implementation and the resulting change in the capacity factor and demand. 447 

The data collection gathered from the previous step, i.e., the process to generate 448 
combinations between the inputs, is used to represent each output through multiple linear 449 
regression models. Additionally, the inputs and outputs from combinations have been 450 
adapted for the type of probabilistic distribution fitting the models (logistic). The 451 
regression inputs (independent variables) can be shown in Table 1. They are normalized 452 
between 0 and 1 to avoid scale effects that usually cause disbalance in the weights of the 453 
regression terms. On the other hand, the outputs (dependent variables) are shown in Table 454 
2, in which values are constrained between zero and one. PHS means pumped hydropower 455 
storage; CHP means combined heat and power; PP means thermal power plants; and HP 456 
means heat pumps. Finally, the options to provide flexibility in the system are linked to 457 
the capacities of variable renewables, as the back-up units are to the installed capacity of 458 
the whole park.  459 

The reason behind the selection of logistic distributions for most of the outputs is the fact 460 
that the inputs are discrete by design in the experiment (2, 3, 4 points in the range), and 461 
not continuous variables (e.g., ranges based on uniform distributions). Consequently, the 462 
response (output) can be assumed to follow a binomial probability distribution. Two 463 
exceptions have been considered, the demand for electricity and the generation of natural 464 
gas (available synthetic gas), which are also effects caused by the different configurations 465 
in the mix, so captured in the regression models. These two variables are not limited 466 
between 0 and 1, so a normal distribution fits the model, instead of a logistic one. 467 

A realistic maximum for each capacity factor (CF) has been assumed by technology, to 468 
compute the relative variation of the output (Table 2, second column). 469 
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 470 

Table 1. The regression inputs and outputs are considered. SynthGas to synthetic gas 471 
produced with hydrogen. Grid stability is defined between 0 and 1 in EnergyPLAN. 472 

Name definitions are explained in Table B. 2. 473 

Regression input name Regression input definition (as a function of combinations’ inputs) 
[dimensionless] 

𝑤𝑖𝑛𝑑  
 

𝑤𝑖𝑛𝑑 𝑜𝑛𝑠ℎ𝑜𝑟𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 [𝑀𝑊] + 𝑤𝑖𝑛𝑑 𝑜𝑓𝑓𝑠ℎ𝑜𝑟𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 [𝑀𝑊]

𝑡𝑜𝑡𝑎𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 [𝑀𝑊]
 

𝑠𝑜𝑙𝑎𝑟 
 

𝑠𝑜𝑙𝑎𝑟 𝑃𝑉 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 [𝑀𝑊] + 𝑠𝑜𝑙𝑎𝑟 𝐶𝑆𝑃 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 [𝑀𝑊]

𝑡𝑜𝑡𝑎𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 [𝑀𝑊]
 

𝑔𝑒𝑜𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑔𝑒𝑜𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑡𝑜𝑡𝑎𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 [𝑀𝑊]
 

Baseload 𝑃𝑃 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 [𝑀𝑊] + 𝐶𝐻𝑃 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 [𝑀𝑊]

𝑡𝑜𝑡𝑎𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 [𝑀𝑊]
 

𝐷𝑆𝑀 𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒 𝑝𝑜𝑤𝑒𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑦 [𝑀𝑊]

𝑡𝑜𝑡𝑎𝑙 𝑉𝑅𝐸𝑆 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 [𝑀𝑊]
 

𝐸𝑙𝑒𝑐𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑠𝑚𝑎𝑟𝑡 𝐸𝑉 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔&𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔  [𝑀𝑊]

𝑡𝑜𝑡𝑎𝑙 𝑉𝑅𝐸𝑆 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 [𝑀𝑊]
 

𝑃2𝐻 𝑃2𝐻 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 [𝑀𝑊]

𝑡𝑜𝑡𝑎𝑙 𝑉𝑅𝐸𝑆 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 [𝑀𝑊]
 

𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑔𝑟𝑖𝑑 𝑏𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑠 [𝑀𝑊] + 𝑃𝐻𝑆 [𝑀𝑊] + 𝑟𝑜𝑐𝑘𝑏𝑒𝑑 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 [𝑀𝑊]

𝑡𝑜𝑡𝑎𝑙 𝑉𝑅𝐸𝑆 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 [𝑀𝑊]
 

𝐹𝑜𝑠𝑠𝑖𝑙𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑔𝑎𝑠 𝑖𝑛 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦[𝑇𝑊ℎ]

𝑡𝑜𝑡𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑 𝑖𝑛 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦 [𝑇𝑊ℎ]
 

𝑆𝑦𝑛𝑡ℎ𝐺𝑎𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 𝑔𝑎𝑠 [𝑀𝑊ℎ]

𝑡𝑜𝑡𝑎𝑙 𝑉𝑅𝐸𝑆 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 [𝑀𝑊] ∗ 8760 [ℎ]
 

𝐺𝑟𝑖𝑑𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐺𝑟𝑖𝑑 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦[𝑑𝑚𝑛𝑙] 

 474 

Table 2. Nomenclature and definition for the outputs of interest. VarElecDemand and 475 
VarNatGas mean variation of the electricity demand and natural gas, respectively 476 

(related to the reference configuration values).  477 
Regression 
output name 

Max CF of the 
technology (%) 

Regression output definition (as a function 
of results from EnergyPLAN) 
[dimensionless] 

𝑉𝑎𝑟𝐶𝐹𝑤𝑖𝑛𝑑𝑂𝑛 23.2 max(𝐶𝐹௪௜௡ௗை௡) − 𝐶𝐹௪௜௡ௗை௡[𝑇𝑊ℎ]

max(𝐶𝐹௪௜௡ௗை௡) [𝑇𝑊ℎ]
 

𝑉𝑎𝑟𝐶𝐹𝑤𝑖𝑛𝑑𝑂𝑓𝑓 36.8 max൫𝐶𝐹௪௜௡ௗை௙௙൯ − 𝐶𝐹௪௜௡ௗை௙௙[𝑇𝑊ℎ]

max൫𝐶𝐹௪௜௡ௗை௙௙൯ [𝑇𝑊ℎ]
 

𝑉𝑎𝑟𝐶𝐹𝑠𝑜𝑙𝑎𝑟𝑃𝑉 12.1 max(𝐶𝐹௦௢௟௔௥௉௏) − 𝐶𝐹௦௢௟௔௥௉௏[𝑇𝑊ℎ]

max(𝐶𝐹௦௢௟௔௥௉௏) [𝑇𝑊ℎ]
 

𝑉𝑎𝑟𝐶𝐹𝑐ℎ𝑝 64.5 max(𝐶𝐹஼ு௉) − 𝐶𝐹஼ு௉[𝑇𝑊ℎ]

max(𝐶𝐹஼ு௉) [𝑇𝑊ℎ]
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𝑉𝑎𝑟𝐶𝐹𝑛𝑢𝑐𝑙𝑒𝑎𝑟 89.3 max(𝐶𝐹௡௨௖௟௘௔௥) − 𝐶𝐹௡௨௖௟௘௔௥[𝑇𝑊ℎ]

max(𝐶𝐹௡௨௖௟௘௔௥) [𝑇𝑊ℎ]
 

𝑉𝑎𝑟𝐶𝐹𝑝𝑝 93.6 max(𝐶𝐹௉௉) − 𝐶𝐹௉௉[𝑇𝑊ℎ]

max(𝐶𝐹௉௉) [𝑇𝑊ℎ]
 

𝑉𝑎𝑟𝐶𝐹ℎ𝑝 62.4 max(𝐶𝐹ு௉) − 𝐶𝐹ு௉[𝑇𝑊ℎ]

max(𝐶𝐹ு௉) [𝑇𝑊ℎ]
 

𝑉𝑎𝑟𝐸𝑙𝑒𝑐𝐷𝑒𝑚𝑎𝑛𝑑 - 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑑𝑒𝑚𝑎𝑛𝑑[𝑇𝑊ℎ]

𝐵𝑎𝑠𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑑𝑒𝑚𝑎𝑛𝑑  [𝑇𝑊ℎ]
 

𝑉𝑎𝑟𝑁𝑎𝑡𝐺𝑎𝑠 - 𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝑔𝑎𝑠 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 [𝑇𝑊ℎ]

𝐵𝑎𝑠𝑒 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑔𝑎𝑠 𝑐𝑜𝑛𝑠𝑢𝑝𝑡𝑖𝑜𝑛  [𝑇𝑊ℎ]
 

 478 

After the data is imported, the process can be sorted into three steps. 479 

First, multiplicative terms (a couple of inputs without repetition) are calculated to add 480 
nonlinear effects to the list of inputs. Second, the selection of independent variables is 481 
carried out through the correlation coefficient, as many variables with the highest score 482 
loop up to a score below 0.05. This implicitly assumes that there is no more information 483 
to be gotten from the data. Third, the list with the selected variables performs an MLR 484 
model based on either a binomial or normal probability distribution by output, according 485 
to the output (aforementioned). Finally, the results are automatically printed to compare 486 
the actual values calculated by EnergyPLAN and the ones by the MLR models. The fitting 487 
of goodness for each MLR model is assessed through general statistics such as the R-488 
squared adjusted or the p-value of hypothesis tests, and others like the analysis of outliers, 489 
slice plots, and visual comparison. 490 

The code is saved in an open-access Zenodo repository [45]. 491 

 492 

3. RESULTS 493 

The first part of this section presents the combinations in terms of flexibility options and 494 
renewable penetration in the system. The second one is the statistical analysis of the MLR 495 
models. 496 

 497 

3.1. Combinations in EnergyPLAN 498 

In the present article, the focus is on the statistical analysis of data generated with an 499 
hourly energy model. Data comes from a previously published work where the 500 
requirements of several flexibility options are computed for the integration of large 501 
renewable shares, and energy transitions towards 100% renewable and integrated energy 502 
systems (Pfeifer et al 2021 [46]). The results of the present article aim to improve the 503 
treatment of renewable energy generation from variable sources. 504 
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The EnergyPLAN simulations are presented in annual values, which come from 505 
performing calculations at an hourly level. For that purpose, the relationship between the 506 
capacity factor of onshore wind, and the share of renewables in primary energy is 507 
displayed as an example in Figure 2. Some comments are included to show the influence 508 
of the flexibility options at different levels (in brackets), as well as the influence of 509 
different capacity levels of renewables. A zero (“0”) represents those cases in which the 510 
technology was not used, while one (“1”) represents cases with complete use of it.  The 511 
first three values are related to the used capacities of wind, photovoltaic, and geothermal 512 
power capacities. The remainder is defined by order to the thermal power plant flexibility, 513 
transport electrification, power-to-heat, demand-side management, industry 514 
decarbonization, grid operation requirements, and the generation of synthetic gas. 515 

As expected, the cases with the highest flexible capacity in the system are such that 516 
achieve the highest renewable shares, so the highest capacity factors as well. It may be 517 
noted that the results marked with the same color correspond to the same system 518 
configuration of flexibility options. Besides, the capacities of renewables play a major 519 
role. Due to the uniformity of these inputs across the combinations, there are cases in 520 
which significant problems to employ the available energy. When the capacity to generate 521 
is available, but the demand is lower (lack of flexibility options), curtailment will arise to 522 
match both sides. 523 

Figure 2 shows the capacity factor of wind onshore in terms of the renewable share in the 524 
system. All the combinations are represented, where some sets are highlighted as 525 
examples to explain the figure. The green and red combinations are configured with the 526 
same level of renewable installed capacity; however, the flexibility options in the green 527 
set are significantly greater. Consequently, the CF in the green case is higher – so power 528 
units are more used – than in the red case. Additionally, another two sets (magenta and 529 
blue) are represented to show differences in the vertical direction. In these cases, the 530 
flexibility options are the same and the renewable capacities are not (higher for the blue 531 
case). Despite having similar renewable shares, the magenta case results are much more 532 
optimal (managing a higher CF) than its blue equivalent. The depletion in the CF is 533 
therefore sharply when the flexibility options cannot absorb the overproduction coming 534 
from the variable renewable generations. It is concluded the role of new electricity 535 
demand to remain the capacity factors high. 536 
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 537 

Figure 2. Flexibility vector on the results for the capacity factor of onshore wind in EU-538 
27 region. 539 

 540 

Further clarification of the results and the influence of flexibility options are visible in 541 
Figure 3 (same example with the onshore wind technology). A window of the data 542 
contained in Figure 2 is here enlarged. The lines correspond to constant configurations of 543 
flexibility options to show which of them can integrate more VRES capacity, i.e., the 544 
lines staying at the top more rates of renewable penetration. The orange line (right) has 545 
all the options equal to one, while the blue (left) presents zeros. 546 

The results of these simulations reflect a positive increment in the electricity demand, due 547 
to the increasing role of the electricity in the energy system (heating, e-mobility, 548 
hydrogen), efficiencies, and energy conversions. 549 

 550 

 551 

Figure 3. Selected curves represent one possibility of flexibility integration progression. 552 
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3.2. MLR models 553 

General statistics for all the outputs of interest were summarized from Figure 4 to Figure 554 
12. Despite all the regression models being statistically significant (p-value practically 555 
equal to zero), the accuracy in representing the outputs varies from quite well-fitting such 556 
as VarCFwindOn (0.90) to the worst for VarCFnuclear (0.59). This aspect allowed us to 557 
discuss possible reasons for the differences (next section). We have used the first output 558 
(VarCFwindOn) to explain the remainder of this section.  559 

Figures 4-12 show the correlation between the same output with EnergyPLAN and the 560 
MLR model. The cloud of dots falls close to the red line, which reproduces the 561 
hypothetical perfect regression. Nuclear presented two different patterns, one “S” shape 562 
(logistic type) with 55% of flexibility (CF between 0.45 to 1) and another dot pattern with 563 
100% flexibility (CF between 0 and 1) like the output VarCFpp. 564 

 565 

 566 

Figure 4. Estimated output of VarCFwindOn in the EnergyPLAN’s results compared to 567 
the results of the regression model. R-squared adjusted: 0.9023; p-value: 0.0000. 568 

Probabilistic distribution function: Binomial. 569 
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 570 

Figure 5. Estimated output of VarCFwindOn in the EnergyPLAN’s results compared to 571 
the results of the regression model. R-squared adjusted: 0.8538; p-value: 0.0000. 572 

Probabilistic distribution function: Binomial. 573 

 574 

 575 

Figure 6. Estimated output of VarCFwindOn in the EnergyPLAN’s results compared to 576 
the results of the regression model. R-squared adjusted: 0.8995; p-value: 0.0000. 577 

Probabilistic distribution function: Binomial. 578 
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 579 

Figure 7. Estimated output of VarCFwindOn in the EnergyPLAN’s results compared to 580 
the results of the regression model. R-squared adjusted: 0.8786; p-value: 0.0000. 581 

Probabilistic distribution function: Binomial. 582 

 583 

 584 

Figure 8. Estimated output of VarCFwindOn in the EnergyPLAN’s results compared to 585 
the results of the regression model. R-squared adjusted: 0.5867; p-value: 0.0000. 586 

Probabilistic distribution function: Binomial. 587 
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 588 

Figure 9. Estimated output of VarCFwindOn in the EnergyPLAN’s results compared to 589 
the results of the regression model. R-squared adjusted: 0.6121; p-value: 0.0000. 590 

Probabilistic distribution function: Binomial. 591 

 592 

 593 

Figure 10. Estimated output of VarCFwindOn in the EnergyPLAN’s results compared 594 
to the results of the regression model. R-squared adjusted: 0.8615; p-value: 0.0000. 595 

Probabilistic distribution function: Binomial. 596 
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 597 

Figure 11. Estimated output of VarCFwindOn in the EnergyPLAN’s results compared 598 
to the results of the regression model. R-squared adjusted: 0.7481; p-value: 0.0000. 599 

Probabilistic distribution function: Normal. 600 

 601 

 602 

Figure 12. Estimated output of VarCFwindOn in the EnergyPLAN’s results compared 603 
to the results of the regression model. R-squared adjusted: 0.8764; p-value: 0.0000. 604 

Probabilistic distribution function: Normal. 605 

 606 
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VarCFwindOn has been used as an example to explain the next results. The other outputs 607 
are included appendices. Table 3 represents the loop iterations results for VarCFwindOn. 608 
We can see correlation coefficients always above the criteria (0.05), and how much 609 
information (R-squared) was captured by each of the regression inputs. The nonlinear 610 
multiplicative term between wind and solar clusters (Wind_Solar, i.e., wind • solar) seems 611 
to be highly correlated, representing about 23% of the information in the equation 612 
(normalized R-square adjusted values). It is selected in an iteration when the nonlinear 613 
relationship delivered the highest correlation factor (>0.05). On the other hand, the 614 
repetitive terms mean that the cluster can include more information about the output of 615 
interest. Computationally, they come from the same reasoning as Wind_Solar, i.e., the 616 
highest correlation factor was achieved by Storage in iterations 6 and 11 when selecting 617 
the inputs for VarCFwindOn. The rest of these tables were saved in APPENDIX C. 618 
Number of inputs differs from one output to another. Thereby, VarCFchp (0.88, Figure 619 
7) iterated 15 times while VarCFwindOff (0.85) did it 7 times. 620 

 621 

Table 3. Inputs selected over iterations to build the regression model for the output 622 
VarCFwindOn. Combined inputs (input 1 * input 2) are represented by '_'. A correlation 623 

coefficient of 0.05 was the criteria to stop the loop. 624 

Regression input Correlation coefficient R-squared adjusted 
Wind_Solar 0.53 0.28 
FossilIndustry 0.48 0.23 
SynthGas 0.44 0.19 
GridStability 0.34 0.12 
ElecTransport 0.34 0.12 
Storage 0.23 0.05 
Wind_Solar 0.30 0.09 
Wind 0.28 0.08 
Geothermal 0.20 0.04 
Wind_Solar 0.12 0.02 
Storage 0.11 0.01 
Wind 0.09 0.01 
Wind_Solar 0.09 0.01 
P2H 0.09 0.01 
DSM 0.06 0.00 

 625 

Cook’s distance (Di, Equation 2) is useful for identifying outliers longer than a threshold 626 
(three times the mean of Cook’s distance as rule) It is calculated by removing the ith 627 

combination from the model and recalculating the regression. 𝑌ఫ(ప)
෢  is the fitted response 628 

value when excluding i. MSE is the mean squared error of the regression model. p is the 629 
number of predictors. A plot of this indicator for VarCFwindOn is shown in Figure 13 (to 630 
see more, APPENDIX G). In the case analyzed, we can see several highly influential 631 
combinations upper the threshold (dotted line), which involves 8.42% of the 632 
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combinations. VarCFsolarPV accounted the highest percentage of outliers (8.48%) while 633 
VarCFnuclear the lowest (5.86%). 634 

 635 

Equation 2 636 

𝐷௜ =
∑ (𝑌ఫ

෡ − 𝑌ఫ(ప)
෢ )ଶ௡

௝ୀଵ

𝑝 ∙ 𝑀𝑆𝐸
 637 

 638 

 639 

Figure 13. Plot observation diagnostics of outliers (Cook’s distance) MLR model for 640 
“VarCFwindOn”. The dotted line represents the recommended threshold value  of three 641 

times the mean. 642 

 643 

Inference about coefficients of regressions is carried out through hypothesis tests in t-644 
statistics. Table 4 shows the t-statistic (tStat) and related p-value by regression input 645 
(row). Every p-value fell low, so coefficients were statistically significant. If we look at 646 
similar tables in APPENDIX E all the p-values were below 0.05, usually, the criteria to 647 
consider the null hypothesis true. We may conclude that selection of features based on 648 
the correlation coefficient is validated. 649 

 650 
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Table 4. Hypothesis test on t-statistics for the output VarCFwindOn. 5% of significant 651 
level. SE: standard error of coefficients. tStat: t-statistic. 652 

Regression input SE tStat p-value 

DSM 0.58 -12.39 2.97e-35 

ElecTransport 0.02 -67.70 0 

FossilIndustry 0.02 105.74 0 

Geothermal 0.66 23.08 7.29e-118 

GridStability 0.04 62.60 0 

P2H 0.59 -16.20 4.82e-59 

Storage 0.22 -56.53 0 

SynthGas 0.42 -89.95 0 

Wind 0.06 63.67 0 

Wind_Solar 0.32 45.10 0 

 653 

Finally, slice plots show the regression surface predicted, i.e., the fitted response values 654 
as a function of a single predictor variable (green line) with the other predictor variables 655 
held constant. 95% confidence bounds are also displayed in top and bottom dot red lines. 656 
Predictors remained within narrow response surfaces. For instance (Figure 14), when 657 
ElecTransport was equal to 0.10366, VarCFwindOn was estimated in 0.037599 658 
[0.0328705, 0.0429779], an 16% of uncertainty with 95% of confidence (more figures in 659 
APPENDIX F). These figures visually provided a rational behavior between the 660 
regression input and the output, e.g., a positive relation between Wind_Solar and 661 
VarCFwindOn meaning that the higher is the installed capacity of renewables in the 662 
system, the higher is the loss of electricity in such generation units, for the rest of the 663 
system remains constant. Another example is the negative relation between 664 
ElectTransport and this output has coherence in the way that more V2G capacity implies 665 
more flexibility to allocate curtailment, so less variation in the capacity factor respected 666 
to the maximum of the technology. The slope is indicative of the estimator regarding the 667 
general stability of the output in the power system. SynthGas of FossilIndustry presented 668 
high slopes in their slice plots, thus, they strongly affected the output. 669 
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 670 

Figure 14. Slice plots of some regression inputs for the output ‘VarCFwindOn’. Units: dmnl. 671 

 672 

Figure 5 (continued) 673 
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4. DISCUSSION 674 

Different methods to represent sub-annual information in IAMs have been reviewed in 675 
the literature review of the introduction section. At least, a time resolution of 8 hours has 676 
been found to achieve an accurate representation of the fundamental effects caused by the 677 
variable renewable generation in the energy system of models. The group of methods 678 
called representative time windows (time slices) is becoming obsolete in comparison with 679 
the hourly and sub-hourly analysis. This work contributes to the IAM field with a stylized 680 
approach based on 1-hour resolution and multiple linear regression models. However, 681 
similarly to the RLDC approach, the dynamics over consecutive hours are lost in the 682 
developed method. EnergyPLAN captures the hourly dynamics, but the MLR models 683 
implicitly save this information from the results of combinations. 684 

The clustering step is considered a sensitive task of the process. The expertise in the 685 
energy model to be used in the approach (EnergyPLAN in this work) is required to 686 
identify which inputs should be selected and group them into representative technologies 687 
and specific coherent values to perform the combinations.  688 

The MLR models fit reasonably well for most of the outputs. Nonetheless, two exceptions 689 
have been highlighted, VarCFpp and VarCFnuclear. The loss of accuracy in the 690 
regressions may arise from three reasons. First, the cluster is not correctly represented, 691 
i.e., more inputs are required in EnergyPLAN to better render the effect produced by the 692 
technology. Second, the existence of non-linearities so a poor representation when fitting 693 
the linear regression models. Third, the cluster requires a greater number of points to 694 
represent the range of values.  695 

The number of combinations is a bottleneck for introducing more information about the 696 
system. The computational cost to perform the combinations has been the week (roughly), 697 
a duration that exponentially increases with new points and clusters (equation 1). 698 

Going into details of the code to generate the MLR, in general, the algorithm assures the 699 
convergence to the criteria (Pearson’s coefficient equal to 0.05) to deliver a set of 700 
statistically correlated inputs for the MLR model, while correctly choosing the best 701 
probability distribution to fit the model. 702 

All the inputs selected for the MLR models have shown a p-value below 5% in the 703 
Student’s tests, so statistically significant. The inputs are coherent with the equations of 704 
EnergyPLAN (Table C. 1). For example, VarCFwindOn does not rely on the installed 705 
capacity of solar power plants, and vice versa; while VarCFchp relies on the grid stability 706 
share. The positive values correctly reflect the penalty in the capacity factor of these 707 
technologies. The higher the wind capacity, the lower the CF of this technology will be 708 
(remaining the rest constant). Another example is that synthetic gas is flexible in 709 
decarbonizing the system while reducing the CEEP, so the approach has shown the 710 
significance of this fuel along with all the outputs. The effect is visible with a negative 711 
term in VarCFwindOn and VarCFsolarPV outputs, and a positive term for the variation 712 
of natural gas consumption (VarNatGas). It implies that the higher is this input, the higher 713 
the VRES generation and consumption of gas will be. Finally, the results show a 714 
negligible penalty to the wind offshore technology (VarWindOff) so barely influenced by 715 
the curtailment. This is derived from the CEEP strategy, where both solar-PV and onshore 716 
wind has been considered for the curtailment measure but not the offshore wind 717 
technologies. 718 
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The presence of nonlinear terms in MLR models cheers up the discussion on whether the 719 
nonlinearity should be studied. Wind_Geothermal (and not Geothermal) is present in only 720 
one output, VarNatGas. On the one hand, these terms are generated from the combination 721 
of inputs, which may compete with the original ones. If so, the method could be 722 
introducing collinearity and correlation terms that don’t introduce additional information 723 
in the analysis. On the other hand, the slice plots show narrow nonlinear bands 724 
(VarCFwindOn), a positive aspect supporting a conclusion made years ago by Alan L. 725 
[53], who stated that the nonlinearity “should be limited to experimental studies”, like 726 
the one we have carried out in this work. In summary, a deeper insight could clarify the 727 
role and shape of nonlinear terms in MLR models. 728 

The configurations have covered a wide range of values per technology. Some of them 729 
run with almost nothing generation from VRES, while others do it with high shares. 730 
Although most of the Cook’s distances have fallen below the limit, a remarkable number 731 
of combinations did it upper the bound. This is problematic since those combinations are 732 
not appropriately captured by the MLR model. Most outliers are derived from 733 
configurations with low shares of inflexible units (Baseload and GridStability) and high 734 
or very high shares of VRES.  735 

The exercise has demonstrated the relevance of the experiment design. The output 736 
VarCFnuclear presents a two-level pattern, similar to the stepped dot cloud in VarCFpp. 737 
The cause behind these bad regressions is rooted in the variation of some parameters that 738 
should be constant assumptions, e.g., the nuclear part load (Baseload cluster) and the 739 
minimum grid stability (GridStability cluster) parameters. They behave as “if then else” 740 
switches in EnergyPLAN, so several combinations fall at the same horizontal threshold 741 
(around 0.45 in VarCFnuclear). However, other outputs show a more spread pattern so 742 
less influenced by the assumption, that is the case of VarNatGas. It is therefore 743 
highlighted that dispatchable thermal power plants (PP2) and nuclear units are both in the 744 
last positions of the power supply, i.e., the implicit information about these technologies 745 
in the combinations data is the most complex to be captured so their MLR models require 746 
more inputs to capture more relationships of EnergyPLAN.  747 

Despite EnergyPLAN has been used for this work, the method is sufficiently general that 748 
it could, in principle, be applied to any couple of hourly and annual-resolution models 749 
due to its heuristic nature and fast calculation time. Once the MLR models are fitted, they 750 
provide, through input-output thinking, feedback on the behavior (CFs) of the 751 
technologies involved in the model. 752 

A visualization of the cross-comparison of different criteria between the developed 753 
approach and the rest of the aforementioned methods has been included in Table 5. The 754 
next points discuss ideas from it: 755 

1) The dynamics over consecutive hours are normally captured by the energy 756 
models, but these dynamics over the whole year are lost in time slices and duration 757 
curves [54]. This will inevitably lead to issues when checking the hourly (and sub-758 
hourly) reliability of the power system. Furthermore, when providing flexibility 759 
options, there is no way to implicitly account for the power ramps of the 760 
technologies, an effect that such methodologies do not capture. This work, 761 
however, could capture the power ramps whether the energy model consider them, 762 
which was not the case with EnergyPLAN.  763 
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2) The uncertainty analysis of the parameters present in the modeling of the power 764 
sector is growing up in the literature about IAMs [55], and this work opens a new 765 
avenue in this matter. Although the values of the inputs are set up by 766 
combinations, uniform, triangular, or normal probability distributions could be 767 
designed to set up those values and effectively generate a confidence interval per 768 
parameter. The sensitivity analysis (e.g., Montecarlo) usually employs these 769 
intervals to deliver a range of possible scenarios and better assess the policies 770 
tested in the IAM. 771 

3) The authors agree with Ueckerdt et al. [56] on the limitations of collecting the 772 
regional-specific data. This work assumes constant hourly profiles for both 773 
demand and supply sides, a source of uncertainty subjected to changes in climate 774 
phenomena and consumption patterns in our society. 775 

 776 

Table 5. Summary of features for different methods, including the developed approach 777 
of this work. 778 

Methods/ 
Criteria 

Time 
slices 

RLDC (time-
aggregation 
method) 

Soft-
linking 

Hard-
linking 

This work 

Dynamics over 
consecutive 
hours 

Only 
within 
the 
temporal 
window 
(temporal 
slice) 

No Yes Yes Implicitly 
with 
EnergyPLAN 

Potential 
feedback to 
the IAM 

Yes Yes No Yes Yes 

Flexibility to 
include 
variability 
management 
options 

High (can 
be 
modelled 
in the 
IAM) 

High (can be 
modelled in 
the IAM) 

Given by 
the energy 
model 

Given by 
the 
energy 
model 

High (can be 
modelled in 
the IAM) but 
must be 
present in 
the energy 
model 

Accuracy Low Medium High Very high Medium 
Complexity Low Medium (easy 

to understand 
but 
mathematically 
complex) 

Medium 
(requires a 
deep 
knowledge 
of both 
models to 
consistenly 
link them) 

High (as 
for soft-
linking 
but also 
requires 
to hard-
code the 
link) 

High 
(requires a 
deep 
knowledge 
of both 
models + 
advanced 
statistical 
knowledge) 

Reliability of 
the power 
system 

Low Medium High (if 
power 
flow 
analysis is 
included) 

Very high 
(if power 
flow 
analysis is 
included) 

High (issues 
are hourly 
checked in 
the energy 
model)  
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Usability and  High High Low  Low High 
presence in 
IAMs 

High (in 
declining 
trend) 

High Low 
(recent 
approach) 

Low 
(recent 
approach) 

Not tested 
yet 

Computational 
cost in the IAM 

Fast Relatively fast Slow Slow Fast 

Potential 
uncertainty 
analysis in the 
coefficients 

No No No No Yes 

 779 

The limitations identified during the process can be addressed in further work, which 780 
could be focused on: i) implementing parallel processing algorithms to achieve a wider 781 
scope for action in the clusterization step; ii) applying other algorithms in the step of 782 
feature selection to compare them in the selection of the inputs for the regressions (e.g., 783 
Lasso, Ridge, StepWise – both, forward, backward); iii) representing intermediate 784 
relationships of the energy chains, e.g., calculate hydrogen as the output of the regression 785 
model and then use it to estimate the next variable, in this case, the production of synthetic 786 
gas, liquid fuel and hydrogen in Industry; iv) test the approach for other regional profiles; 787 
or v) generate the input values from probability distributions and then perform an 788 
uncertainty analysis to the parameters of the MLR models. In a second stage, the 789 
application of these MLR models would be into an IAM and report a benchmarking 790 
exercise comparing it with other approaches such as the soft/hard-linking between the 791 
hourly-resolution model and the IAM.  792 

5. CONCLUSIONS 793 

The necessity for reaching 100% renewable and neutral decarbonized scenarios has been 794 
claimed by our society and studied in the literature. The introduction section shows some 795 
advances to realistically represent the expansion of RES exploitation and technologies to 796 
manage the imbalance between the demand and supply sides in Integrated Assessment 797 
Models (IAMs). Despite several methods that have been proposed, these models require 798 
a fast response in calculating the equations to deliver a manageable product for testing 799 
(e.g., calibration) and develop the model, as well as enhance the assessment in stakeholder 800 
engagement exercises. This has led to a new line of research, a conceptualization to link 801 
hourly-resolution energy models into IAMs through statistical annual indicators, avoiding 802 
an expensive computational load. The approach is based on combinatorial analysis and 803 
multiple linear regression (MLR) models, and EnergyPLAN for the European region is 804 
applied as a case study. 805 

The approach has delivered plausible coefficients in the regression analysis for a wide 806 
range of values in the clusters considered to represent the technological changes of the 807 
system. The capacity factor of the onshore wind and photovoltaic solar power plants, as 808 
well as both variations in the demand for electricity and natural gas, are correctly 809 
captured. 810 

Further work has been identified for this exciting research work. Parallel processing and 811 
improvements in the data management, as well as the usage of powerful servers, can 812 
reduce the time cost per simulation of EnergyPLAN. Additional algorithms can be 813 
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introduced in the analysis of feature selection and other types of probability distributions 814 
for the MLR models. Finally, a final version of the approach should be tested in a real 815 
IAM to compare the results with other methods and across scenarios and different regions. 816 
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Table A. 1. Presence of VRES, methods used to explicitly represent the potential production of VRES, and methods used to explicitly represent 1090 
the power system operation with the presence of VRES in IAMs. Abbreviations: Abbreviations: CF: Capacity Factor. GIS: Geographical 1091 

Information System mapping. CF: Capacity Factor. GIS: Geographical Information System mapping. MOS: Merit Order Strategy. CES: Constant 1092 
Elasticity Substitution. MNL: Multinomial Logit function. Own elaboration. 1093 

Time 
resolution / 

Model 

IMAGE 
(IAM) 

AIM/CGE 
(IAM) 

GCAM 
(IAM) 

MEDEAS 
(IAM) 

REMIND-
MAgPIE 
(IAM) 

POLES 
(Energy model) 

MESSAGEix-
GLOBIOM 

(IAM) 

WITCH-
GLOBIOM 

(IAM) 
VRES 

technologies 
Wind 

onshore 
and solar-

PV 

Wind 
onshore 

and solar-
PV 

Wind 
onshore, 

wind 
offshore 

and solar-
PV 

Solar-PV, wind 
onshore, and 
wind offshore 

Solar-PV, 
wind (not 
specified), 

run-of-river 
hydropower 

Wind (not 
specified), 

solar-PV, run-
of-river 

hydropower, 
marine, solar 
CSP (with or 
without heat 

storage) 

Wind onshore, 
wind offshore, 

solar-PV 

Wind 
onshore, 

wind 
offshore, 
solar-PV 

Sub-annual 
/ hourly 

  Sub-annual 
load 

profiles 

  Hourly 
production 

profiles derived 
from techno-

physical 
potentials and 

installed 
capacities 

Linear 
downscaling for 
soft-linking in 

hourly resolution 
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Yearly Exogenous 
supply 

curve from 
GIS study  

Installed 
capacity 
based on 
official 
reports  

Exogenous 
resource 
supply 

curve and 
installed 
capacity 

Curtailment and 
installed capacity 
(up to maximum 

potential) 

Region-
specific 

potentials 
with 

different 
grades of 
CF, and 
installed 
capacity 

 Exogenous supply 
curve and CF 

based on 
technological 
penetration  

Supply 
curves (CF 
qualities) 

and 
installed 
capacity  

 Technical 
side 

Dispatch 
RLDC 

with 156-
time slices. 

Region-
wide 

pooling 
contained 
ex ante in 

the 
RLDC. 

 Dispatch based 
on exogenous 
priorities & 
endogenous 

EROI 

Dispatch 
according to 
RLDC with 
4 load bands 

Investment 
RLDC only has 
a country-level 

pool  

Partial equilibrium 
and load factors 
(capacity reserve 
and flexibility 
requirements)  

Power grid 
reliability (soft-
linking) at an 
hourly level  

Decisions 
based on 
priorities 

constrained 
by CF 
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Economical 
side 

Decision-
based 
MOS 

based on 
operational 

costs. 

MNL 
function 
based on 

generation 
prices. 

Competition 
based on the 

linearly 
optimal 

least-cost 
approach in 

25 sub-
annual time 
segments 
(monthly 

day/night + 
super peak) 

 Optimization 
of generation 

cost by 
technology 

Hourly decision 
based on 

priorities in 
representative 
days (12 days 

for EU-27; 2 for 
the rest). 
Residual 

technologies 
compete in 

terms of 
variable 

generation 
costs.  

 Constant 
elasticity 

of 
substitution 
functions 
of costs. 

1094 
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Table A. 2. Flexibility options present in IAMs. DSM: Demand-Side Management. 1095 
V2G: Vehicle-to-Grid. P2H: Power-to-Heat. Own elaboration. 1096 

Models / 
Flexibility 
options 

IMA
GE 

AIM/
CGE 

GC
AM 

MED
EAS 

REMIND-
MAgPIE 

PO
LE
S 

MESSA
GEix-

GLOBI
OM 

WITCH-
GLOBIO

M 

Demand-side 
management 

     X   

V2G connection      X   

Electrolyzers to 
produce 
hydrogen 

    X X X  

Grid electric 
batteries 

X X  X X X   

Storage (pumped 
hydropower, 
compressed air 
storage, etc) 

   X  X X X 

Power-to-heat     X    

Curtailment X X  X X X   

Back-up 
dispatchable 
generation  

X X X X X X X X 

Following these lines, the models analyzed in the literature review are briefly described. 1097 

IMAGE – Integrated Model to Assess the Global Environment 1098 

The potential supply of solar and wind onshore power are estimated from a GIS study 1099 
(0.5 x 0.5 degree) to relate the installed capacity with the capacity factor [57]. There is no 1100 
differentiation between wind onshore and offshore, however, only the potential of the 1101 
first one has been carried out. 1102 

IMAGE works with monthly load duration curve (LDC) from exogenous regional factors. 1103 
Investments and generation costs allow for competition between technologies to increase 1104 
their share in the capacity park. Dispatch of electricity is based on merit order strategy. 1105 
VRES have priority, then baseload is assigned based multinomial logit model, and finally, 1106 
the peak is fulfilled through the same model (multinomial logit). 1107 

Three are the effects of VRES in the IMAGE model. When curtailment, the load factor 1108 
is reduced, and costs are increased. Beyond 5% of VRES penetration, capacity credit 1109 
decreases so back-up power is then required, generating an extra cost that is allocated to 1110 
the variable renewable technology. Another effect is related to the spinning reserve. 1111 
IMAGE assumes a minimum of 3.5% plus 15% of VRES installed capacity. So, total 1112 
reserves are increased just in case the additional spinning reserves exceed the capacity 1113 
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of reserves already installed [58], if so, costs are again allocated to the intermittent 1114 
technology. 1115 

More recently, the RLDC approach has been applied to this model [25]. Resolution 1116 
changed from monthly LDCs to 156-time slices. Flexibility, ramping, adequacy and 1117 
curtailment are addressed now under the new method. Exogenous investments for 1118 
electric storage-based VRES share appeared in the article [25]. 1119 

AIM/CGE – Asia-Pacific Integrated Model/Computable General Equilibrium 1120 

It is an econometric model. Availability (installed capacity) and cost of VRES are 1121 
exogenously introduced from official reports. The power supply is annually solved by 1122 
employing logit function and generation prices, providing the shares by technology that 1123 
contributes to satisfying the annual demand. Exponents of logit functions are calibrated 1124 
and exogenously introduced for future scenarios. The decreasing trend for the price of 1125 
electricity generated by renewables is assumed [59] (section 13.3. Energy Supply); 1126 
however, intermediate trade of inputs, labour, and capital cost are included, so power 1127 
sector cost can be estimated. 1128 

Later, two studies have improved the complexity of that power system. On the one hand, 1129 
storage and curtailment have been represented through exponential equations whose 1130 
parameters were estimated using the least-squares method [60] for regional and hourly 1131 
LDC data from another study [56]. The use of intermediate trade allows for including 1132 
costs for using storage since the devices need to be provided by another sector. 1133 

GCAM – Global Change Analysis Model 1134 

The model written in GAMS (open-source version available on GitHub) represents the 1135 
investment decisions by using a probabilistic logit formulation to foster or not the 1136 
expansion of supply generation units in four different representative segments (peak, 1137 
subpeak, intermediate, baseload). 15% of the reserve margin is considered.  1138 

Availability of resources is given by exogenous supply curves. Twenty-five sub-annual 1139 
load profiles (one per day and night each month and a super-peak considering the top 10 1140 
hours in the year) [61]. A specific version of GCAM [62] disaggregates the electricity 1141 
demand load by end-use sector (transportation, buildings, and industry). 1142 

MEDEAS – Modelling the Energy Development under Environmental And 1143 
Socioeconomic Constraints 1144 

This system dynamics model (Vensim software with an open-source version in Python) 1145 
works on a yearly basis. Exogenous potentials are introduced as maximum installed 1146 
capacities of technologies. Then, CF delivers the potential electricity generated by 1147 
technology. Capacity factors of VRES technologies are dynamized with damage 1148 
functions according to the penetration of such variable sources into the power system 1149 
(section 2.2. of Supplementary Material in [63]). 1150 
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The operation of the power sector is represented by constant priorities up to fulfilling 1151 
the demand (by order: VRES, nuclear, dispatchable renewables, and then dispatchable 1152 
fossil power plants). 1153 

REMIND/MAgPIE – Regional Model of Investment and Development/Model of 1154 
Agricultural Production and its Impact on the Environment 1155 

REMIND models the regional potential of non-biomass renewables employing a grade 1156 
of capacity factors in which superior grades correspond to more full-load hours per year. 1157 
It runs in 5-year steps from 2005 to 2060, then 10 years up to the end of the century. A 1158 
constraint is defined to remain the coherently combined deployment of both solar-PV 1159 
and -CSP in the same region [64]. 1160 

The integration of VRES (solar-PV, wind, and run-of-river hydropower) in REMIND 1161 
takes away a couple of effects. Integration costs and curtailment are parameterized from 1162 
the REMIx (integration costs) [32] and DIMES (RLDCs – 4 bands: peak, higher mid, 1163 
lower mid, and base; plus 2 additional variables for maximum peak load and curtailment 1164 
– containing the impact of storage) [56]. This optimization model assumes a single 1165 
electricity market balance. Optimization is carried out to show the least cost 1166 
configuration of the power system.  1167 

REMIND considers several flexibility options. Storage requirement is determined by the 1168 
share and the profile of renewable production, as well as the curtailment present in the 1169 
year. Power-to-heat may be promoted but limited by the spatial observed data. Finally, 1170 
hydrogen can be used to reduce curtailment and flexible the power system operation. 1171 
The effect of additional grid capacity is also considered and connected to the VRES 1172 
(wind and solar) capacity and regional spatial differences. 1173 

POLES – Prospective Outlook on Long-term Energy Systems 1174 

Generation of VRES is defined by production profiles, calculated from the potential of 1175 
the technology available (derived, in turn, from the meteorological and technical 1176 
potentials and land-use exclusion factors) and costs [65]. 1177 

Operation by priority. Decentralized production is firstly allocated (solar-PV, solar CSP, 1178 
small hydro, and stationary fuel cells) in competition with the retail electricity price. 1179 
Secondly, non-dispatchable centralized power plants (wind, large solar, hydro run-of-1180 
river, marine). Thirdly, nuclear and dam hydropower plants (short flexibility rates) [65]. 1181 

On the negative part of RLDC, some demanders may mitigate the variability. Exports, 1182 
hydrogen production, smart mode of electric vehicles, and other storage facilities 1183 
(pumping hydropower plants, stationary batteries, compressed air energy storage, and 1184 
demand-side management). Finally, curtailment would remain. The remaining 1185 
technologies compete based on variable costs of generation [65]. 1186 
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MESSAGEix/GLOBIOM – Model of Energy Supply Systems And their General 1187 
Environmental Impact/Global Biosphere Management Model 1188 

MESSAGEix is the energy modeling of this IAM, open-source and based on 1189 
optimization of computable general equilibrium formulation. 1190 

Quality of the regional resource potentials of VRES is exogenously introduced in terms 1191 
of annual CF based on technical, sustainability, and economic criteria [66].  1192 

A stylized approach [67] sizes the operational reliability through two metrics. On the 1193 
one hand, capacity reserves to match a peak load (estimated at 1.7 times the average) 1194 
and a standard reserve margin of between 15-20%. The penalty on the CF of VRES is 1195 
also computed according to the penetration of these technologies in the power system. 1196 
On the other hand, flexibility parametrization to different technologies (negative values 1197 
for VRES) is based on an hourly unit commitment model. 1198 

Storage (pumped hydropower, compressed air storage, flow batteries) and demand-side 1199 
technologies to produce hydrogen (electrolyzers) add flexibility to the power system. 1200 
Flexibility is modeled through negative and positive parameters. Negative ones increase 1201 
the stiffness of the system operation, i.e., VRES and demand. On the other counterpart, 1202 
the dispatchable power supply is flexible, so technologies under this category are 1203 
positive, e.g., diesel engine, combined cycle gas turbine, electrolyzers, and so on. 1204 

A recent experience of soft-linking with the PLEXOS-world model achieved hourly 1205 
resolution on the operation side and expansion of the transmission grid for the IAM [33]. 1206 

WITCH/GLOBIOM – World Induced Technical Change Hybrid Model/ Global 1207 
Biosphere Management Model 1208 

The supply curve for solar-PV is considered from the same analysis for the REMIND 1209 
model [68], delivering the maximum amount of capacity which can be installed by 1210 
region, in terms of capacity factor or full load hours in the year. Different classes are 1211 
sorted by quality and distances from the load centers. Similarly, the supply curve of wind 1212 
onshore and offshore is modeled in the same way but data comes from the NREL 1213 
laboratory [69].  1214 

Elasticities of substitution based on costs are the core of WITCH to reflect internal 1215 
changes in the electricity sector.  1216 

Two constraints are introduced to manage VRES variability. Firstly, flexibility 1217 
constraints ensure that suppliers can handle load fluctuations. In order to reflect that, a 1218 
flexibility parameter (between -1 and 1) is assumed by a supplier, where negative values 1219 
add inflexible production and positive values include flexible production. Annually, 1220 
production must be positively balanced. Secondly, the capacity constraint guarantees the 1221 
match of the peak load demand (so-called firm capacity) in between 1.5-2 times 1222 
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(regional differences) the average load demand (annual demand divided by 8760 hours, 1223 
so the mean hourly capacity, assuming the equivalence MWh – MW in the hour) [70]. 1224 

Penalty on the CF of VRES technologies is considered to render the effect of increasing 1225 
rates of VRES capacity in the system, as well as storage requirements. 1226 

APPENDIX B 1227 

 1228 
Figure B. 1. General diagram of the EnergyPLAN, version 15.1 (15 September 2020) 1229 

[44]. 1230 
 1231 
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 1232 

Figure B. 2. Inputs in EnergyPLAN relating to the transport module. 1233 
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Table B. 1. List of flexibility options, definitions, and own estimations for the approach proposed 1234 

Acronyms Definition Own estimations 
Baseload Flexible operation 

of thermal and 
nuclear power 
plants. 
 

The baseline minimum operating capacity of power plants is estimated to be 20 % of the nominal capacity 
of existing power plants. This corresponds to 67817 MW in PP and 24397 MW in CHP. Therefore, in the 
cases representing the development of an energy system, the minimum operating capacity is reduced to 50 
% of current capacity as well as to 0 % of current capacity representing fully flexible thermal power plants. 
 

ElecTransport Transport 
electrification and 
V2G technology. 
 

The baseline configuration of the fuel use in the transport sector is taken from historical data representing 
the year 2017. The cases representing future development consider the decrease of fossil fuel use and shift 
to electricity-based transport. 
 

Storage Energy storage 
systems: pumped 
hydropower 
(PHS), stationary 
batteries, and 
rock-bed storage. 
 

The capacity for energy storage in batteries, rock-bed storage and pumped hydro storage accounts for 20 
hours of average electricity demand. The maximum storage capacities account for 500 GWh in battery 
storage, 1600 GWh in rock bed storage, and up to 5000 GWh in PHS storage. The biggest role is given to 
the PHS due to the availability of favorable geographical features as well as rock beds for similar reasons, 
especially in mountainous regions. The smaller capacity is given to stationary battery storage due to 
concerns about mineral supply and because the highest emphasis is given to the batteries in electric 
vehicles. This notion ties again with the merit order of technologies in EnergyPLAN where the V2G is 
utilized more frequently than stationary storage. Therefore, the resources are put to better purpose if 
implemented into vehicles. 
 

P2H Power-to-heat. 
Devices to 
transform 
electricity to heat. 

Power to heat is considered in the realm of district heating systems. The capacity is considered in the range 
from 10 000 MW to 100 000 MW which by capacity corresponds up to 25 % of district heating peak load. 
Also, additional reasoning for the use of such limitation is the used version of EnergyPLAN 
 

FossilIndustry Decarbonization 
of industry with 
hydrogen and 
electricity.  

The industry sector is simplified for the simulations. The fossil fuel-based energy demand is represented 
solely by natural gas. The sector is decarbonized with the implementation of hydrogen and electricity 
which replaces natural gas. Natural gas has the reference energy demand of 2090 TWh in the industry 
sector and is being able to be completely replaced by electricity and hydrogen. 
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SynthGas Generation of 
synthetic gas 

Another way of decarbonizing the energy system is by the introduction of synthetic gas. The used values 
in the simulations are only 0 and 1000 TWh since no additional emphasis is given to the more widespread 
use of this technology. The use of this technology is partially interchangeable with the decarbonization of 
industry, but it is much more energy-intensive since it requires further processing to generate synthetic gas 
as opposed to the pure hydrogen. 
 

DSM Demand-side 
Management. 
Flexibilization of 
electricity 
demand. 

Flexible demand is assumed to account for maximum of up to 50 % of basic electricity demand. Out of 
total flexible demand, 40 % is assumed to be within the 24 hours and 30 % both in a weekly and monthly 
periods. 
 

GridStability System stability 
parameter The used values for this parameter are 0 and 0.3. The parameter describes the minimum share of energy 

sources able to provide ancillary services which must be in operation at any given time in the system. 
Legacy energy systems rely heavily on spinning reserve and rotating masses to ensure grid stability‡ with 
the provision of such services. With advancements in energy electronics, this problem can be managed 
even without the large-scale implementation of spinning reserves. The reason for the decrease of this 
parameter is because spinning reserve comes from thermal power plants and hydropower plants which 
then must be kept in any system architecture. But it is not realistic to insist on this kind of legacy inertia 
when the majority of electricity generation comes from VRES. Which can provide artificial inertia as 
ancillary services. 

 
 1235 

 
‡ We use the definition from EnergyPLAN documentation, which might be translated as the “share of total electricity production in every hour that must come from a dispatchable power plant, i.e., units with flexible 
power output”. This parameter encloses a set of assumptions in effects such as ramp constraints and reliability on voltage and frequency that are more properly studied in temporal resolutions close to milliseconds [71].   
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Table B. 2. Characteristics of the inputs for combinations and clusters. 1236 

Cluster Input Definition 

Units 

Point values 

Wind 
 

 
Wind [MW] The capacity of wind power 

plants in the region. MW 

500000, 1000000, 
1500000, 2000000, 
2500000 

Offshore wind [MW] 
The capacity of offshore wind 
power plants in the region. MW 

50000, 100000, 
150000, 200000, 
250000 

Solar PV [MW] The capacity of solar-
photovoltaic power plants in 
the region. MW 

1000000, 1500000, 
2000000, 2500000 

CSP [MW] The capacity of concentrated 
solar power plants in the 
region. MW 

20000, 40000, 
60000, 80000 

Geothermal Geothermal [MW] Capacity of geothermal power 
plants 

MW 
1000,50000, 
100000 

Baseload PPminimum [MW] Minimum operating capacity 
in Power Plants (PP1/PP2 in 
EnergyPLAN) MW 0, 33908.5, 67817 

 CHPminimum [MW] Minimum operating capacity 
in cogeneration power Plants 
(CHP in EnergyPLAN) MW 0, 12198.5, 24397 

 Nuclear part load [-] 
Flexibility share of nuclear 
power plants (totally rigid = 1) - 0, 0.5, 1 

 Electrification and V2G 
share Electrification of the transport 

sector as a share - 0.05, 0.5, 1 

 Jet fuel Jet fuel consumption in 
transport sector TWh/year 71.72, 35.88, 0 

 Bio jet fuel Jet biofuel consumption in 
transport sector TWh/year 0.039, 35.88, 71.72 

 Diesel Diesel consumption in 
transport sector TWh/year 

2586.15, 968.59, 0 

 Biodiesel 
Biodiesel consumption in 
transport sector TWh/year 

26.45, 387.44, 0 

ElecTranport Petrol Petrol consumption in 
transport sector TWh/year 

933.62, 309.95, 0 

 Biopetrol Biopetrol consumption in 
transport sector TWh/year 

6.76, 77.49, 0 

 Natural gas Gris gas (natural gas) 
consumption in transport 
sector TWh/year 

36.48, 193.72, 0 
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 LPG Liquified Petrol Gas 
consumption in transport 
sector TWh/year 

70.74, 0, 0 

 Electricity smart charge 
Electricity demand for electric 
vehicles in smart charge mode TWh/year 

64.25, 581.15, 
1162.3 

 Storage 

Storage in electric vehicles GWh 

1271.48, 11501.25 
23002.5 

 Charging/discharging 
capacity The capacity of electric 

storage in the power grid MW 

186484.2, 1686850, 
3373700 

 

P2H [MW] 
Power-to-heat capacity (heat 
pumps+electric boilers) MW 

10000, 50000, 
100000 

P2H 

P2H storage [GWh] 
Storage of heat for power-to-
heat facilities GWh 400, 2000, 4000 

Storage 
Battery power capacity 
[MW] 

The capacity of batteries in 
the power grid MW 0, 50000, 100000 

 
Battery storage capacity 
[GWh] 

Storage of batteries in the 
power grid GWh 0, 250, 500 

 

PHS [MW] 
The capacity of pumping 
mode in hydropower plants MW 0, 50000, 100000 

 

PHS [GWh] 
Storage in hydropower plants 
to the pumping mode GWh 0, 800, 1600 

 
High-temperature 
storage [MW] 

The capacity of Rockbed 
storage dedicated to high-
temperature processes MW 

50000, 75000, 
100000 

 
High-temperature 
storage [GWh] 

Storage of Rockbed facilities 
dedicated to high-temperature 
processes GWh 2500, 3750, 5000 

 

Flexible demand [-] 
Percentage of electricity 
demand that is flexible % 0, 25, 50 

DSM Day energy flexible 
[TWh] 

Flexible electricity demand in 
the day TWh/year 0, 300, 600 

 
Week energy flexible 
[TWh] 

Flexible electricity demand in 
the week TWh/year 0, 225, 450 

 
Month energy flexible 
[TWh] 

Flexible electricity demand in 
the month TWh/year 0, 225, 450 

 
Day power flexible 
[MW] 

Flexible capacity in the 
demand side of the power 
system in the day MW 0, 46100, 92200 

 
Week power flexible 
[MW] 

Flexible capacity on the 
demand side of the power 
system during the week MW 0, 34575, 69150 
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Month power flexible 
[MW] 

Flexible capacity on the 
demand side of the power 
system during the month MW 0, 34575, 69150 

 Industry 
decarbonization [-] 

Percentage of electricity-based 
industry processes % 0, 0.5, 1 

FosilIndustry 
Natural gas in the 
industry [TWh] Natural gas in the Industry TWh/year 2090, 1045, 0 

 H2 in the industry 
[TWh] Hydrogen in the Industry TWh/year 0, 522.5, 1045 

 
Electricity in the 
industry [TWh] Electricity in the Industry TWh/year 0, 522.5, 1045 

SynthGas 

Synthetic gas [TWh] Synthetic gas production TWh/year 0, 1000 

GridStability 

Grid Stability [Dmnl] Grid stability parameter Dmnl 0, 0.3 

 1237 

Table B. 3. Characteristics of the constant inputs. 1238 

CONSTANT VALUES 

Name Explanation Unit Value 

River hydro 

The capacity of Run-of-River hydropower plants. MW 80000 

Nuclear 

The capacity of Nuclear power plants. MW 

169541.3 

PP1 
The capacity of back-up (traditional fossil fuels) power plants 
in PP1 group MW 

121985.9 

PP2 
The capacity of back-up (traditional fossil fuels) power plants 
in PP2 group   

60442.3 

CHP group 3 

The capacity of Combined Heat and Power plants in group 3 MW 

97588.72 

CHP group 

The capacity of Combined Heat and Power plants in group 2 MW 

0 

District heating in 
gr3 

Demand of district heating in group 3. TWh 

1100 
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District heating in 
gr2 

Demand of district heating in group 2 TWh 0 

Natural gas in HH 

Demand of natural gas in households. TWh 0 

Oil in HH 

Demand of oil in households. TWh 0 

Coal in HH 

Demand of coal in households. TWh 0 

Biomass in HH 

Demand of biomass in households. TWh 700 

Heat pumps in HH 

Demand supplied by heat pumps in households. TWh 620 

Electric boilers in 
HH 

Demand for electricity in electric boilers in households. TWh 150 

Solar heating in HH 

Supply of solar heat to the households TWh 240 

Fuels in power 
plants and boilers Fuel distribution. Biomass and natural gas may be replaced by 

synthetic gas in case hydrogen is considered a flexibility 
option.   50:50 

Dammed hydro 

The capacity of dammed hydro power plants   MW 95621.54 

Water supply 

Dammed hydro power plants water supply   TWh 200.5 

Electricity dump 

Electricity demand for electric vehicles in dump charge mode TWh 0 

Oil industry 

Oil in industry TWh 0 

Coal industry 

Coal in industry TWh 0 

Regulation strategy 

EnergyPLAN demand regulation strategy    892345160 

 1239 

 1240 

 1241 

 1242 

 1243 
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APPENDIX C 1244 
Table C. 1. Independent and dependent coefficients for the MLR models. 1245 

Output 
/ Input 

Indep Wind Solar DSM ElecTra
nsport 

FossilI
ndustry 

Geothe
rmal 

GridSta
bility 

Storage P2H Baseloa
d 

SynthGa
s 

Wind_Solar Wind_Geothe
rmal 

VarCF
windO

n 

-
4.5175988
3002705 

3.6807205
9240587  

-
7.1529475
7299932 

-
1.1923361
4245133 

1.7264178
2605151 

15.178266
4933308 

2.6716240
4522911 

-
12.279593
2963979 

-
9.5302694
3907884  

-
37.58797235
98354 

14.3263042582598  

VarCF
windOf

f 

-
11.904870
0426978 

   -
1.9869799
1428340 

2.9585920
2929348 

 15.709305
7696786 

-
30.151698
5814758 

  -
69.43153095
81178 

25.3452476914258  

VarCFs
olarPV 

-
7.4720430
7678028 

 3.6224295
8603858 

-
14.592384
5023130 

-
1.4154180
7499874 

2.0919310
8991946 

21.363389
4960933 
 

5.5478036
9186252 

-
12.367512
8522223 

  -
45.29821392
62519 

26.3006488717257  

VarCFc
hp 

-
8.5856927
6028090 

11.973123
9286154 

8.8264063
5730433 

 -
0.1844239
62089583 

1.1435904
2663306 

24.098474
9273926 

0.4927398
09072430 

-
0.4931947
66652292 

 -
58.617736
6418888 

-
19.05984663
65920 

1.99507948641974  

VarCF
nuclear 

0.0873451
526187755 

1.4228971
4011823 

  -
0.1965074
57420719 

0.4782417
37569628 

10.853355
9298036 

-
4.1752088
1482007 

-
2.1623580
3321994 

 8.3253843
2895066 

-
7.439190169
60886 

  

VarCF
pp 

1.2775938
3238363 

-
0.4970926
45111093 

  -
0.1773445
40245201 

0.3894188
53753712 

17.213043
7735043 

-
4.8798489
4855034 

1.8690045
0173288 

 -
24.321960
7666055 

-
8.529303672
33265 

  

VarCF
hp 

-
1.9576190
1260798 

 1.3484324
8874067 

-
2.2909843
0085947 

 -
0.5297817
26371574 

-
6.2061253
8992764 

-
0.8097883
01873015 

-
0.9249035
41847654 

98.095172
9236564 

9.5435406
3650877 

10.26606510
98250 

2.52609930725042  

VarNat
Gas 

0.4850730
30576524 

  -
0.8549562
39965714 

-
0.0514200
189140126 

-
0.4203056
94205656 

 -
0.7184740
95055575 

0.2258926
61639468 

 -
4.7232134
8132826 

3.652320409
17356 

1.73481274693728 10.3859255459323 

VarEle
cDema

nd 

-
1.7390618
1938716 

1.6426792
0484489 

1.6309648
4952781 

15.704901
8816037 

 0.3483333
33333371 

  -
0.0548291
262786735 

-
0.1284052
44450522 

-
0.1219671
86221387 

-
0.057177900
4234652 

-
0.06288330145414
62 

 

 1246 
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APPENDIX D 1247 

This appendix shows the results from the iterative process selecting the inputs for each 1248 
the regression model. 1249 

 1250 

Table D. 1. Inputs selected over iterations to build the regression model for the output 1251 
'VarCFwindOff'. Combined inputs (input 1 * input 2) are represented by '_'. A 1252 

correlation coefficient of 0.05 was the criteria to stop the loop. 1253 

Regression input Correlation coefficient R-squared adjusted 
GridStability 0.29 0.09 
FossilIndustry 0.26 0.07 
Wind_Solar 0.23 0.05 
SynthGas 0.18 0.03 
Storage 0.13 0.02 
ElecTransport 0.09 0.01 
Wind_Solar 0.11 0.01 

 1254 

Table D. 2. Inputs selected over iterations to build the regression model for the output 1255 
‘VarCFsolarPV’. Combined inputs (input 1 * input 2) are represented by '_'. A 1256 

correlation coefficient of 0.05 was the criteria to stop the loop. 1257 

Regression input Correlation coefficient R-squared adjusted 
Wind_Solar 0.43 0.19 
FossilIndustry 0.45 0.20 
GridStability 0.49 0.24 
SynthGas 0.46 0.21 
Solar 0.35 0.12 
ElecTransport 0.38 0.14 
Storage 0.22 0.05 
Geothermal 0.24 0.06 
DSM 0.09 0.01 
Wind_Solar 0.08 0.01 

 1258 

Table D. 3. Inputs selected over iterations to build the regression model for the output 1259 
‘VarCFchp’. Combined inputs (input 1 * input 2) are represented by '_'. A correlation 1260 

coefficient of 0.05 was the criteria to stop the loop. 1261 

Regression input Correlation coefficient R-squared adjusted 
Baseload 0.60 0.36 
Wind 0.59 0.35 
FossilIndustry 0.52 0.27 
SynthGas 0.53 0.29 
ElecTransport 0.21 0.04 
Baseload 0.24 0.06 
Solar 0.18 0.03 
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Wind_Solar 0.24 0.06 
Geothermal 0.27 0.07 
Storage 0.14 0.02 
GridStability 0.13 0.02 
Solar 0.12 0.01 
Wind_Solar 0.10 0.01 
Baseload 0.06 0.00 
SynthGas 0.05 0.00 

 1262 

Table D. 4. Inputs selected over iterations to build the regression model for the output 1263 
‘VarCFnuclear’. Combined inputs (input 1 * input 2) are represented by '_'. A 1264 

correlation coefficient of 0.05 was the criteria to stop the loop. 1265 

Regression input Correlation coefficient R-squared adjusted 
GridStability 0.67 0.45 
Wind 0.29 0.09 
FossilIndustry 0.28 0.08 
SynthGas 0.22 0.05 
Geothermal 0.17 0.03 
ElecTransport 0.14 0.02 
Baseload 0.13 0.02 
Storage 0.12 0.01 

 1266 

Table D. 5. Inputs selected over iterations to build the regression model for the output 1267 
‘VarCFpp’. Combined inputs (input 1 * input 2) are represented by '_'. A correlation 1268 

coefficient of 0.05 was the criteria to stop the loop. 1269 

Regression input Correlation coefficient R-squared adjusted 
GridStability 0.70 0.49 
Baseload 0.32 0.10 
Geothermal 0.25 0.06 
FossilIndustry 0.21 0.05 
SynthGas 0.22 0.05 
Storage 0.09 0.01 
ElecTransport 0.10 0.01 
Wind 0.09 0.01 

 1270 

Table D. 6. Inputs selected over iterations to build the regression model for the output 1271 
‘VarCFhp’. Combined inputs (input 1 * input 2) are represented by '_'. A correlation 1272 

coefficient of 0.05 was the criteria to stop the loop. 1273 

Regression input Correlation coefficient R-squared adjusted 
P2H 0.83 0.68 
FossilIndustry 0.27 0.07 
SynthGas 0.18 0.03 
Solar 0.17 0.03 
GridStability 0.16 0.03 
Wind_Solar 0.16 0.03 
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Geothermal 0.10 0.01 
Baseload 0.10 0.01 
Storage 0.08 0.01 
Solar 0.07 0.01 
DSM 0.06 0.00 

 1274 

Table D. 7. Inputs selected over iterations to build the regression model for the output 1275 
‘VarNatGas’. Combined inputs (input 1 * input 2) are represented by '_'. A correlation 1276 

coefficient of 0.05 was the criteria to stop the loop. 1277 

Regression input Correlation coefficient R-squared adjusted 

FossilIndustry 0.64 0.41 

GridStability 0.53 0.28 

Baseload 0.33 0.11 

SynthGas 0.36 0.13 

Wind_Solar 0.33 0.11 

Wind_Geothermal 0.32 0.10 

ElecTransport 0.16 0.02 

SynthGas 0.09 0.01 

DSM 0.07 0.00 

Storage 0.07 0.00 

 1278 

Table D. 8. Inputs selected over iterations to build the regression model for the output 1279 
‘VarElecDemand’. Combined inputs (input 1 * input 2) are represented by '_'. A 1280 

correlation coefficient of 0.05 was the criteria to stop the loop. 1281 

Regression input Correlation coefficient R-squared adjusted 

DSM 0.71 0.50 

FossilIndustry 0.78 0.61 

Wind_Solar 0.40 0.16 

Storage 0.15 0.02 

DSM 0.14 0.02 

P2H 0.12 0.02 
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Solar 0.10 0.01 

Baseload 0.08 0.01 

SynthGas 0.07 0.01 

Wind 0.06 0.00 

Wind_Solar 0.08 0.01 

 1282 
 1283 
 1284 
 1285 
 1286 
 1287 
 1288 
 1289 
 1290 
 1291 
 1292 
 1293 
 1294 
 1295 
 1296 
 1297 
 1298 
 1299 
 1300 
 1301 
 1302 
 1303 
 1304 
 1305 
 1306 
 1307 
 1308 
 1309 
 1310 
 1311 
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APPENDIX E 1312 

The tables of this section summarize t-statistic hypothesis tests for the outputs of 1313 
interest. SE: square errors explained by the term. tStat: t-statistic. Finally, the p-value of 1314 
the t-statistic value is written in the last column. 1315 

 1316 

Table E. 1. Hypothesis test on t-statistics for the output 'VarCFwindOff'. 1317 

Regression input SE tStat p-value 

ElecTransport 0.25 -47.09 0 

FossilIndustry 0.07 -29.23 8.03e-188 

GridStability 0.07 45.06 0 

Storage 0.54 29.26 3.62e-188 

SynthGas 0.89 -33.77 5.46e-250 

Wind_Solar 1.89 -36.69 1.09e-294 

 1318 

Table E. 2. Hypothesis test on t-statistics for the output 'VarCFsolarPV'. 1319 

Regression input SE tStat p-value 

DSM 0.62 -23.58 6.46e-123 

ElecTransport 0.02 -73.91 0 

FossilIndustry 0.02 114.90 0 

Geothermal 0.71 30.21 1.69e-200 

GridStability 0.05 113.42 0 

Solar 0.07 53.43 0 

Storage 0.23 -53.47 0 

SynthGas 0.46 -97.83 0 

Wind_Solar 0.32 82.88 0 

 1320 

Table E. 3. Hypothesis test on t-statistics for the output 'VarCFchp'. 1321 

Regression input SE tStat p-value 
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Baseload 0.57 -102.63 0 

ElecTransport 0.01 -13.75 5.30e-43 

FossilIndustry 0.01 82.19 0 

Geothermal 0.59 41.09 0 

GridStability 0.04 13.33 1.58e-40 

Solar 0.24 36.18 1.47e-286 

Storage 0.17 -2.89 3.90e-3 

SynthGas 0.31 -61.47 0 

Wind_Solar 0.25 48.07 0 

 1322 

Table E. 4. Hypothesis test on t-statistics for the output ' VarCFnuclear'. 1323 

Regression input SE tStat p-value 

Baseload 0.48 17.37 1.48e-67 

ElecTransport 0.01 -17.10 1.43e-65 

FossilIndustry 0.01 38.22 1.20e-319 

Geothermal 0.46 23.83 1.55e-125 

GridStability 0.03 -122.24 0 

Storage 0.14 -15.21 2.82e-52 

SynthGas 0.27 -27.79 5.23e-170 

Wind 0.04 35.91 2.19e-282 

 1324 

Table E. 5. Hypothesis test on t-statistics for the output ' VarCFpp'. 1325 

Regression input SE tStat p-value 

Baseload 0.49 -49.15 0 

ElecTransport 0.01 -15.05 3.69e-51 

FossilIndustry 0.01 30.41 4.41e-203 
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Geothermal 0.47 36.66 3.30e-294 

GridStability 0.04 -138.44 0 

Storage 0.15 12.78 2.03e-37 

SynthGas 0.27 -31.04 1.34e-211 

Wind 0.04 -12.27 1.29e-34 

 1326 

Table E. 6. Hypothesis test on t-statistics for the output ' VarCFhp'. 1327 

Regression input SE tStat p-value 

Baseload 0.55 17.40 8.02e-68 

DSM 0.46 -4.95 7.42e-07 

FossilIndustry 0.01 -38.95 0 

Geothermal 0.54 -11.55 7.39e-31 

GridStability 0.04 -21.96 6.25e-107 

P2H 0.57 171.19 0 

Solar 0.05 26.71 3.99e-157 

Storage 0.17 -5.56 2.68e-08 

SynthGas 0.31 33.18 2.18e-241 

Wind_Solar 0.25 10.23 1.39e-24 

 1328 

Table E. 7. Hypothesis test on t-statistics for the output ' VarNatGas’. 1329 

Regression input SE tStat p-value 

Baseload 0.03 -155.20 0 

DSM 0.03 -33.56 3.68e-246 

ElecTransport 0.00 -70.21 0 

FossilIndustry 0.00 -534.67 0 

GridStability 0.00 -335.82 0 
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Storage 0.01 24.71 1.57e-134 

SynthGas 0.02 215.44 0 

Wind_Geothermal 0.07 143.74 0 

Wind_Solar 0.01 139.17 0 

 1330 

Table E. 8. Hypothesis test on t-statistics for the output 'VarElecDemand’. 1331 

Regression input SE tStat p-value 

Baseload 0.02 -5.88 4.12e-09 

DSM 0.02 897.27 0 

FossilIndustry 0.00 660.20 0 

P2H 0.02 -7.19 6.72e-13 

Solar 0.01 191.02 0 

Storage 0.01 -8.52 1.59e-17 

SynthGas 0.01 -4.95 7.50e-07 

Wind 0.01 187.83 0 

Wind_Solar 0.01 -5.18 2.18e-07 

 1332 
 1333 
 1334 
 1335 
 1336 
 1337 
 1338 
 1339 
 1340 
 1341 
 1342 
 1343 
 1344 
 1345 
 1346 
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APPENDIX F 1347 

This appendix shows the slice plots of the outputs analysed. Units: dmnl.  1348 
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 1349 
Figure F. 1. Slice plots for "VarCFwindOff" 1350 

 1351 
Figure F. 2. Slice plots for "VarCFsolarPV". 1352 
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 1353 
(continued) 1354 

 1355 
Figure F. 3. Slice plots for "VarCFchp". 1356 
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 1357 
(continued) 1358 

 1359 
Figure F. 4. Slice plots for "VarCFnuclear". 1360 
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 1361 
Figure F. 5. Slice plots for "VarCFpp". 1362 

 1363 
Figure F. 6. Slice plots for "VarCFhp". 1364 
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 1365 
(continued) 1366 

 1367 
Figure F. 7. Slice plots for "VarNaturalGasDemand". 1368 
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 1369 
(continued) 1370 

 1371 

 1372 

Figure F. 8. Slice plots for "VarNaturalGasDemand". 1373 



 

70 
 

 1374 

(continued) 1375 
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APPENDIX G 1376 

 1377 

Figure G. 1. Plot observation diagnostics of outliers (Cook’s distance) in MLR model 1378 
for “VarElecDemand”. The dotted line represents the recommended threshold value of 1379 

three times the mean.  1380 

 1381 

Figure G. 2. Plot observation diagnostics of outliers (Cook’s distance) in MLR model 1382 
for “VarCFwindOff”. The dotted line represents the recommended threshold value of 1383 

three times the mean. 1384 

 1385 
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 1386 

Figure G. 3. Plot observation diagnostics of outliers (Cook’s distance) in MLR model 1387 
for “VarCFsolarPV”. The dotted line represents the recommended threshold value of 1388 

three times the mean. 1389 

 1390 

Figure G. 4. Plot observation diagnostics of outliers (Cook’s distance) in MLR model 1391 
for “VarCFpp”. The dotted line represents the recommended threshold value of three 1392 

times the mean. 1393 
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 1394 

Figure G. 5. Plot observation diagnostics of outliers (Cook’s distance) in MLR model 1395 
for “VarCFnuclear”. The dotted line represents the recommended threshold value of 1396 

three times the mean. 1397 

 1398 

Figure G. 6. Plot observation diagnostics of outliers (Cook’s distance) in MLR model 1399 
for “VarCFhp”. The dotted line represents the recommended threshold value of three 1400 

times the mean. 1401 
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 1402 

Figure G. 7. Plot observation diagnostics of outliers (Cook’s distance) in MLR model 1403 
for “VarCFchp”. The dotted line represents the recommended threshold value of three 1404 

times the mean. 1405 

 1406 

Figure G. 8. Plot observation diagnostics of outliers (Cook’s distance) in MLR model 1407 
for “VarNatGas”. The dotted line represents the recommended threshold value of three 1408 

times the mean. 1409 


