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ABSTRACT 21 

Value waste chain generates a significant amount of different agricultural wastes, co-products and 22 

by-products (AWCB) that occur during three major stages of a complex path, from farm to fork.  23 

This paper presents stages where and how waste occurs along the path from the ground to the table 24 

for a period of 7 years, from 2010 to 2016 in the 28 member countries of the European Union 25 

(EU28). Considering the specific conditions of the EU28 community, four different sectors with 26 26 

commodities and waste types that occur in those sectors were analysed: 5 commodities in the Fruit 27 

sector, 10 commodities in the Vegetable sector, 7 commodities in the Cereal sector and 4 28 

commodities in the Animal sector. The analysis consists of three stages of waste appearance: 29 

production (harvesting, farming), processing and consumption (raw, uncooked food). Production 30 

data were taken from Eurostat, import and export data were taken from FAOSTAT. Methodology 31 

and calculations consist of relations between specific values. Those specific values for every 32 

commodity are the production data, import and export data, and consumption of raw food by the 33 

inhabitants of a country. Total consumption of raw food by inhabitant is calculated from the specific 34 

consumption per capita and population. The results of the study showed that from 2010 to 2016 in 35 

the EU28 the estimated quantity of the AWCB appeared to be around 18.4 billion tonnes, with the 36 

sector percentages as follows: Animal ~31%, Vegetable ~44%, Cereal ~22% and Fruit ~2%.  In the 37 

Animal sector, the most dominant were developed countries, with high population density and high 38 

level of industrialisation. The Cereal, Fruit and Vegetable sectors have shown to generate higher 39 

AWCB quantities in the countries with more available land area and appropriate climate conditions.  40 

Keywords: EU28; Agricultural co- and by- products, Resource availability, AgroCycle 41 
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1. Introduction 42 

The EU28 community presents a group of countries sharing the unique market of goods in 43 

Europe (European Union, 2018). Favourable climate conditions of some European countries and 44 

available land area lead to possibilities of high production of vegetables, fruits and cereals. 45 

Furthermore, the countries that are able to produce food for people and animals also focus on farming 46 

with the aim to produce meat, meat products and dairy products (Andersen, 2017). With a population 47 

of approximately 511.8 million (3/4 living in the cities and towns), the EU28 shows reputable status in 48 

the world economy and politics (Eurostat, 2019a). Agricultural production in the European Union is 49 

spread over a large area and includes diverse types of climate. Also, it is the main component of the 50 

primary sector in all Member States. Around 10 million people in the EU28 work in the agriculture 51 

sector. Almost 3/4 of the total agricultural workers are present in the countries in which the economy 52 

and politics provide good living standard and development opportunities (Eurostat, 2015).  53 

According to the research (Esparcia, 2014), most of the waste comes from the construction 54 

sector (33.5%) and the mining and quarrying sector (29.8%) while households take up to 8% of the 55 

total waste production. Agriculture, forestry and fishing are at the bottom of the list with 1.4% of 56 

the total waste production. Authors in (Corrado et al., 2019) have estimated that the 1/3 of the food 57 

produced globally is wasted along the food chain. An important factor that was addressed in the 58 

study is the broad understanding of the context in which food waste is generated. For instance, 59 

marital status and education have a high impact on the quantity of wasted food. The analysis of food 60 

waste/losses in the supply chain models has been studied in (Muriana, 2017). The results have 61 

indicated that legal constraints, political decisions, climatic and economic factors play an important 62 

role in the minimisation and the reduction of food waste/losses. The study (Porter et al., 2016) has 63 

shown the 50-year longitude analysis (1961–2011) of food loss and waste (FLW) and the associated 64 

greenhouse gas (GHG) emissions through the entire food supply chain. The results have shown that 65 
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developing economies cause an increase in food/waste losses, primarily due to increasing losses in 66 

fruits and vegetables. Authors in (Feil et al., 2017) have studied separate collection systems of 67 

plastic waste from municipal solid waste at the level of the European Union. Even though 68 

politically preferred solutions in sustainable waste management require separate collection systems, 69 

economic factors indicate that plastic recycling will hardly ever reach cost neutrality. However, the 70 

other fraction of municipal solid waste − the organic material - could be used for the production of 71 

renewable energy in the form of biogas (Mondal and Banerjee, 2015). It has been shown that pre-72 

treatment methods increase the potential of waste used in the biogas production, and in that way 73 

reduce the negative impact of disposing waste on landfills.  Furthermore,  the application of 74 

vegetable and animal waste together with fractions of municipal solid waste in the anaerobic 75 

digestion, gasification and incineration has been studied in (Massimo and Montorsi, 2018). The 76 

numerical tool developed in the study proved to be helpful in improving the efficiency in the 77 

exploitation of the region-available biomass for energy recovery purposes.  78 

Agricultural Waste, Co-products and By-products (AWCB) could have a significant role in 79 

the world’s production of animal feed. In (San Martin et al., 2016) authors have reported that vegetable 80 

by-products can be potentially served as animal feed since their nutrition and sanitary properties and 81 

the report (Sortino et al., 2014) showed that municipal bio-waste could replace synthetic chemicals for 82 

the remediation of contaminated soil and waters. Furthermore, the production of medicine and high-83 

value-added chemicals from the mixture of potato and orange peel waste has shown potential due to 84 

high protein content in the aforementioned feedstock (Matharu et al., 2016). At the same time, orange 85 

peel could be used in the production of bioelectricity via microbial fuel cell technology (Miran et al., 86 

2016). Biomass residues have shown an important role in the production of bioenergy in the European 87 

Union (Ajanovic and Haas, 2014). The use of residue biomass improves the CO2 balance, but resource 88 

availability, economy and policy on their utilisation have a high impact on the technical and economic 89 
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potential of residue biomass. Authors in (Pereira et al., 2016) showed that the use of poplar biomass as 90 

an alternative feedstock to coal in power plants in Southern Portugal could reduce CO2 emissions 91 

between 8.2% and 16.5%. In (Bentsen et al., 2018) authors determined that the geographical analysis 92 

of the straw used for energy purposes is highly influenced by weather conditions. Furthermore, the 93 

biomass potential from forest and agricultural residues are strongly related to the location and 94 

ecosystem services (Ooba et al., 2016) as well as on logistical, chemical, technological, economic and 95 

social issues (Scarlat et al., 2010). When considering agricultural biomass residues as a source of 96 

energy, it is important to valorise material properties (Mikulandrić et al., 2016). Authors in (Spaccini 97 

et al., 2019) have shown that biological properties and pre-known molecule structure of composted 98 

material from lignocellulose waste make a good basis for the selection of derivatives from composted 99 

materials to provide sustainable agricultural practice. In (Boeykens et al., 2018) authors have shown 100 

that agro-industrial waste could be used as a biosorbent for removal of lead and chromium as a low-101 

cost alternative method for treating effluents. The utilisation of the olive mill wastewater (primarily 102 

carbon content) for the synthesis of luminescent nanomaterials that can be used in biological processes 103 

has been analysed in (Sousa et al., 2019). Except for the biomass residues, a high quantity of plastic 104 

waste is generated as a product of the agricultural activities, and if the plastic waste is correctly 105 

collected instead left on the ground or burned, environmental damage and economic losses can be 106 

prevented (Vox et al., 2016).  107 

The quantities of AWCB have been estimated for 26 different commodities, previously selected 108 

according to the rate of use in each EU28 country from 2010 to 2016. The waste value chain has been 109 

divided into three characteristic groups according to the point where it occurs; harvesting and 110 

cultivation, processing and consumption. Eurostat and FAOSTAT databases have been used for the 111 

analyses, as explained in the following section, where the applied materials and methods have been 112 

described. Estimate of the generated AWCB has been based on the specific relation of the generated 113 
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AWCB per kg of the commodity in each group. The result of this study gives an overview of the 114 

distribution of the technical potential of AWCB across the countries of the European Union. The 115 

interpretation of the estimated quantities of AWCB is further linked to the socioeconomic and physical 116 

factors like level of development, population density, climate conditions and available land area. 117 

2. Materials & methods  118 

This section gives an overview of the applied methods in calculating the AWCB quantity, made 119 

by using relations between the analysed commodity and the specific AWCB production. Key 120 

parameters for estimating the quantity of the AWCB were: produced commodity, exported and 121 

imported commodity and consumed commodity, each of them for a specific EU28 country. 122 

Consumed quantities of the commodity were calculated considering the specific consumption of a 123 

commodity per capita and year. The key assumption was that the quantity of the consumed 124 

commodity does not change over a given period. When there were two or more different values of 125 

consumption, the average value was used for calculation. The AWCB value chain was assumed to 126 

consist of the following stages: harvesting and cultivation, processing and consumption.  127 

The notation of specific values needed for the calculation of commodity and their relations is 128 

shown below. For a country (n), notations for commodities (i) from the Fruit sector, Vegetable 129 

sector and Cereal sector were given by the expressions (I) and (II): 130 

( ) ( ) ( ) ( ) ( )i i i i iPRC PRD IMP CON EXP    − ++ =     ( I ) 131 

( ) (i i) ( )i×CON =POP PC      ( II ) 132 

where:  133 

PRD = Production of commodity (tonnes)    ( 1 ) 134 

CON = Consumption of raw commodity (tonnes)    ( 2 ) 135 
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IMP = Imported quantity of commodity (tonnes)    ( 3 ) 136 

EXP = Exported quantity of commodity (tonnes)    ( 4 ) 137 

PRC = Quantity of processed commodity (tonnes)    ( 5 ) 138 

PC = Consumption of commodity per capita per year (kg)   ( 6 ) 139 

Additionally, in the Animal sector methodology differs compared to the previous sectors. Waste 140 

value chain covers the process of breeding of animals (farming), slaughtering and consumption of 141 

meat and meat products.  142 

Expression (III) shows the relation between values in the Animal sector: 143 

( ) ( ) ( )i i i
MAN =SPECMAN  FARM     (III) 144 

where: 145 

FARM = Number of farmed animals (heads)    ( 7 ) 146 

SPECMAN = Manure production per animal in a year (tonnes)   ( 8 ) 147 

   MAN = Total manure production in a year (tonnes)                          ( 9 ) 148 

149 
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3. Case study  150 

In this paper, the applied methodology refers to the EU28 countries. The analyses were 151 

conducted for the period from 2010 to 2016. The data for a produced commodity were taken from 152 

the Eurostat (Eurostat, 2019b), and the data for imported and exported quantities of commodities 153 

were taken from the FAOSTAT (FAO, 2019). The population of the EU28 Member States (2010–154 

2016) was taken from the Eurostat (Eurostat, 2019c). Consumption per capita of fresh (raw) or 155 

processed food on a national level was given in the reports of the AgroCycle project (Ćosić et al., 156 

2018). 157 

3.1 Commodities in the EU28 158 

In order to select the most important commodities for analysis on the EU28 level, the 159 

FAOSTAT data of top commodities by quantity in 2016 were used (FAOSTAT, 2019). Top 160 

commodities in the EU28 community were cow milk, sugar beet and cereals. Also, some 161 

commodities were related to the geographical position of the country. Variety in size and population 162 

of countries along with a variety of top commodities together result in a variety of type and 163 

quantities of the AWCB throughout the EU28.  164 

3.2 Commodity sectors and characteristic of AWCB 165 

There were four analysed commodity sectors: Fruit, Vegetable, Cereal and Animal. The 166 

animal AWCB required a slightly different approach in calculation compared to the methodology 167 

shown. As it follows, a different notation was used. Stages in the animal AWCB value chain were 168 

farming, slaughtering and processing, and consumption. In the next section, characteristic of 169 

AWCBs for every commodity from every sector and for every step are briefly described.  170 
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3.2.1 Fruit sector 171 

The Fruit sector consists of the following commodities: apples, grapes, oranges, peaches and 172 

tangerines. During the cultivation and harvesting, a certain amount of fruit is eaten or destroyed by 173 

animals (birds, rabbits, deer, wasps), or due to bad weather conditions and cannot be used as food. 174 

Furthermore, different diseases harm fruit products, stalks and trees, which can result either in 175 

lower income from the sale of fruit or in total devastation of the plant. Fruit intended for processing 176 

can result in different products depending on the type and purpose of the process. All analysed 177 

fruits can be used in the preparation of juice, whether concentrated or not. Furthermore, apples can 178 

be used for vinegar production (Viana et al., 2017), such as grapes. Citrus fruits are commonly used 179 

for food additives production, such as aroma (Madrera et al., 2015). Table 1 contains a mass ratio of 180 

the main AWCB to product ratio for the Fruit sector. The main fruit AWCB in the harvesting and 181 

cultivation step are pruning residues and leaves. The literature data estimate that citrus fruits have 182 

lower values of prunes compared to the grape. Also, many different AWCB appear in the 183 

processing step, mainly pomace and marc waste remained after pressing raw fruit. 184 

 185 
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Table 1 Main AWCB produced from the Fruit sector 186 

Commodity/Fruit Harvesting/Cultivation ratio Source 

Apple Pruning residues and leaves to product ratio − 0.10 kg/kg (Pellizzi, 1985) 

Grape 
Stalks to product ratio − 0.055 kg/kg 

(Bacic, 2003) 
Pruning residues and leaves to product ratio − 0.30 kg/kg 

Orange Pruning residues and leaves to product ratio − 0.085 kg/kg (Velázquez-Martí et al., 2013) 

Peach Pruning residues and leaves to product ratio − 0.12 kg/kg (Extension, 2017) 

Tangerine Pruning residues and leaves to product ratio − 0.065 kg /kg (Extension, 2017) 

Commodity/Fruit Processing ratio Source 

Apple 
Pomace (peel, core, seed, calyx, stem) to product ratio − 0.25 kg/kg 

(Dhillon et al., 2013) 
Sludge to product ratio − 0.10 kg/kg 

Grape 

Marc waste (skin, pulp, seed and stems) to product ratio − 0.22 kg/kg 

(Bacic, 2003) CO2 to product ratio − 0.07 kg/kg 

Lees to product ratio − 0.03 kg/kg 

Orange 
Orange pomace to product ratio − 0.37 ÷ 0.60 kg/kg 

(Saravacos and Kostaropoulos, 2002), (Bates et al., 2001), 

(Goodrich and Braddock, 2006), (Siles et al., 2016) 

Orange processing water to product ratio − 4.4 ÷ 38.2  L/kg (Bharati et al., 2017) 

Peach 

Processing water to product ratio − 16.4 ÷ 21.8 L/kg (Bharati et al., 2017) 

Peach stone to product ratio − 0.10 ÷ 0.27kg/kg (Loizzo et al., 2015), (Folinas et al., 2015), (Ordoudi et al., 2018) 

Peach pomace to product ratio – 0.30 kg/kg (Loizzo et al., 2015) 

Tangerine 
Tangerine pomace to product ratio − 0.20 ÷ 0.30  kg/kg (Nitayapat et al., 2015), (Hwang et al., 2017) 

Tangerine processing water to product ratio − 4.4 ÷ 38.2  L/kg (Bharati et al., 2017) 

Commodity/Fruit Consumption ratio Source 

Apple Rotten apples to product ratio – 0.12 ÷ 0.20 kg/kg (Parfitt et al., 2010), (Conrad et al., 2018) 

Grape Rotten grapes to product ratio − 0.12 ÷ 0.20  kg/kg (Parfitt et al., 2010), (Conrad et al., 2018) 

Orange Rotten oranges to product ratio − 0.12 ÷ 0.20  kg/kg (Parfitt et al., 2010), (Conrad et al., 2018) 

Peach 
Rotten peaches to product ratio − 0.12 ÷ 0.20  kg/kg (Parfitt et al., 2010), (Conrad et al., 2018) 

Peach stone to product ratio − 0.10 ÷ 0.27 kg/kg (Ordoudi et al., 2018) 

Tangerine Rotten tangerines to product ratio − 0.12 ÷ 0.20  kg/kg (Parfitt et al., 2010), (Conrad et al., 2018) 

 187 
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AWCB that occur along the supply chain from the ground to table can be valorised in 188 

different ways. Peach stone has been investigated as an adsorption material for contaminants in 189 

aqueous solution (Torrellas et al., 2015). Citrus peel waste has been studied as a feedstock for 190 

anaerobic digestion and further production of biochar (Fagbohungbe et al., 2016). Sugars present in 191 

grape stalks have shown to be interesting substrates for the fermentation process and the production 192 

of bioethanol (Egüés et al., 2013). After the fermentation of apple pomace, the remaining material 193 

can be used as a feed additive in the animal breeding (Ajila et al., 2015).  In the last step of the 194 

waste value chain, the estimated quantity of rotten fruits takes up to 20% of the total fruit intended 195 

for consumption (Parfitt et al., 2010). The quantity of processed fruits is calculated for every 196 

country in each given year, using expressions (I-II). An example of the calculation of the apple 197 

AWCB quantities for Germany in 2016 is given below:  198 

PRD = 1,032,910 t 199 

IMP = 610,955 t 200 

EXP = 88,972 t 201 

CON = 1,314,914 t 202 

PRC = (1,032,910+610,955) − (88,972+1,308,938) = 239,979 t 203 

The quantity of pruning residues is 0.10 kg per kg of harvested apples: for Germany, it was 103,291 204 

t in 2016. Apple pomace that occurs in processing step takes 0.25 kg per kg of processed apples: for 205 

Germany, the quantity of apple pomace was 59,995 t in 2016. The quantity of the consumed apples 206 

in Germany was 1,314,914 t, and 210,386 t of apples in Germany in 2016 went mouldy (spoiled, 207 

rotten).  208 

 209 
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3.2.2 Vegetable sector 210 

As for the Vegetable sector, the following commodities were analysed: tomatoes, cabbages, 211 

cauliflowers and broccoli, onions, carrots, potatoes, sunflower seeds, rapeseed, sugar beet and 212 

olives. Vegetables are mainly used as food for people or animals. Also, like fruits, different diseases 213 

that decrease the income and quality of the products impact vegetables. Vegetables are also used as 214 

an initial source in the production of different products and semi-products (sauces, preserved and 215 

frozen products). Table 2 contains a mass ratio of the main AWCB to product ratio for the 216 

Vegetable sector. Many different AWCB occur during the harvesting and cultivation stage. Due to 217 

the diversity of commodities that are included in the Vegetable sector, some of the AWCB 218 

primarily appear during the cultivation stage (twigs, leaves and woody branches from olives or 219 

sugar beet leaves and stones) and some during the harvesting period (damaged vegetables).  220 
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Table 2 Main AWCB produced from the Vegetable sector 221 

Commodity/Vegetables Harvesting/Cultivation Source 

Tomato Damaged tomatoes to product ratio − 0.20 kg/kg (Parfitt et al., 2010), (Conrad et al., 2018) 

Cabbage 

Damaged cabbage to product ratio − 0.20 kg/kg 
(Parfitt et al., 2010), (Conrad et al., 2018), (Munhuweyi et al., 

2016) 

Leaves to product ratio − 0.20 ÷ 1.51 kg/kg 
(Munhuweyi et al., 2016), (Stoffella and Fleming, 1990), (Haque 

et al., 2016), (Nurhidayati et al., 2016), (Bajgai et al., 2014) 

Cauliflower and broccoli Damaged cauliflower and broccoli to product ratio − 0.20 kg/kg  (Parfitt et al., 2010), (Conrad et al., 2018) 

Carrot Damaged carrot to product ratio − 0.20 kg/kg (Parfitt et al., 2010), (Conrad et al., 2018) 

Onion Damaged onion to product ratio − 0.20 kg/kg (Parfitt et al., 2010), (Conrad et al., 2018) 

Potato Damaged potatoes to product ratio − 0.20 kg/kg (Parfitt et al., 2010), (Conrad et al., 2018) 

Sunflower seed 
Damaged sunflower seed to product ratio − 0.10 kg/kg (Parfitt et al., 2010), (Conrad et al., 2018) 

Straw to product ratio – 1.00 kg/kg (Bakker, 2013) 

Rapeseed 
Stalks to product ratio – 1.76 kg/kg  

(Islam et al., 2018) 
Damaged rapeseed to product ratio − 0.10 kg/kg 

Sugar beet 
Sugar beet leaves to product ratio − 0.14 ÷ 0.91 kg/kg  

(Krick, 2019) 
Stones to product ratio − 0.001 ÷ 0.04 kg/kg  

Olives 
Twigs and leaves to product ratio − 2.68  ÷ 5.15 kg/kg (Russo et al., 2016), (Acampora et al., 2013), (Sansoucy et al., 

1985), (European Commission, 2012) Woody branches to product ratio − 2.68 kg/kg 

Commodity/Vegetables Processing Source 

Tomato 

Tomato skin to product ratio − 0.10 kg/kg (Kao and Chen, 2016) 

Tomato pomace to product ratio − 0.03 ÷ 0.07 kg/kg (Del Valle et al., 2006) 

Wastewater to product ratio − 8.20 l/kg (Loehr, 2012) 

Total suspended solids to product ratio − 0.06 kg/kg (Loehr, 2012) 

Cabbage Outer cabbage leaves to product ratio − 0.35÷ 0.40 kg/kg (Prokopov et al., 2015), (Agati et al., 2016) 

Cauliflower and broccoli 

Wastewater to product ratio − 8.20 l/kg  (Loehr, 2012) 

Total suspended solids to product ratio − 0.0025 kg/kg (Loehr, 2012) 

Leaves to product ratio − 0.50 kg/kg (Pankar and Bornare, 2018) 

Carrot 
Pomace and peel to product ratio − 0.12 kg/kg 

(Loehr, 2012) 
Wastewater to product ratio − 11.10 l/kg 

Onion 

Wastewater to product ratio − 21.00 l/kg (Loehr, 2012) 

Total suspended solids to product ratio − 0.01 kg/kg (Loehr, 2012) 

Peel to product ratio  − 0.25 kg/kg (Committee, 2016) 

Potato 
Peel to product ratio − 0.10 kg/kg 

(Loehr, 2012) 
Process water to product ratio − 16.00 l/kg 
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Suspended solid to product ratio − 0.27 ÷ 0.50 kg/kg 

Sunflower seed 
Sunflower cake meal to product ratio − 0.60 ÷ 0.64 kg/kg 

(Mogala, 2012) 
Slurry (ugido) to product ratio − 0.015 ÷ 0.045 kg/kg 

Rapeseed Cake meal to product ratio − 0.67 kg/kg (Ivanova et al., 2016) 

Sugar beet 

Stones to product ratio − 0.001 ÷ 0.005 kg/kg 

(Krick, 2019) 

Beet soil to product ratio − 0.04 ÷ 0.10 kg/kg 

Molasses to product ratio − 0.032 ÷ 0.035 kg/kg 

Sugar beet pulp to product ratio − 0.05 kg/kg 

Wash water to product ratio − 0.75 l/kg 

Sugar beet factory lime to product ratio − 0.04 kg/kg 

Sugar beet tops & tails to product ratio − 0.007 kg/kg 

Olives 

Twigs and leaves to product ratio − 2.68  ÷ 5.15 kg/kg (Abaza et al., 2015), (Ahmad and Ayoub, 2014) 

Olive mill wastewater to product ratio − 0.50 ÷ 1.50 kg/kg (Barbera et al., 2013) 

Olive pomace to product ratio − 0.25 kg/kg (Manzanares et al., 2017) 

Commodity/Vegetables Consumption Source 

Tomato Rotten tomatoes to product ratio − 0.12 ÷ 0.20 kg/kg (Parfitt et al., 2010), (Conrad et al., 2018) 

Cabbage Rotten cabbage to product ratio − 0.12 ÷ 0.20 kg/kg (Parfitt et al., 2010), (Conrad et al., 2018) 

Cauliflower and broccoli Rotten cauliflower and broccoli to product ratio − 0.12 ÷ 0.20 kg/kg (Parfitt et al., 2010), (Conrad et al., 2018) 

Carrot Rotten carrot to product ratio − 0.12 ÷ 0.20 kg/kg   (Parfitt et al., 2010), (Conrad et al., 2018) 

Onion Rotten onion to product ratio − 0.12 ÷ 0.20 kg/kg (Parfitt et al., 2010), (Conrad et al., 2018) 

Potato Rotten potatoes to product ratio − 0.12 ÷ 0.20 kg/kg (Parfitt et al., 2010), (Conrad et al., 2018) 

Sunflower seed Not applicable, as sunflower seed are not consumed directly by humans n/a 

Rapeseed Not applicable, as rapeseed is not consumed directly by humans n/a 

Sugar beet Not applicable, as sugar beet are not consumed directly by humans n/a 

Olives 
Wasted olive oil to product ratio −  0.12 ÷ 0.20  kg/kg 

(Parfitt et al., 2010), (Conrad et al., 2018) 
Rotten olives to product ratio − 0.12 ÷ 0.20 kg/kg 

 222 
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 AWCB that occur along the supply chain from the ground to table can be valorised in 223 

different ways. Olive leaves have shown to be a natural source of antioxidants and sugars (Romero-224 

García et al., 2016). With different way of processing for a certain type of vegetable, different 225 

AWCB are pomace, wastewater, skin, wash water, meal. Tomato processing waste has shown to be 226 

the source of lycopene (Poojary and Passamonti, 2015). Furthermore, onion skin has been 227 

recognised as a source of biosugars and quercetin (Choi et al., 2015). In the consumption stage, the 228 

estimated percentage of rotten vegetables matches the one in the fruit consumption stage. It has 229 

been shown that vegetable waste can be utilised for the synthesis of silver nanoparticles with 230 

antibacterial activity (Mythili et al., 2018). For non-edible vegetables, there is no data in the 231 

consumption stage. The quantity of processed vegetable is calculated for every country in each 232 

given year, using expressions (I-II). An example of the calculation of the tomato AWCB for Spain 233 

in 2016 is presented below:  234 

PRD = 5,233,540 t 235 

IMP = 145,013 t 236 

EXP = 911,106 t 237 

CON = 673,381 t 238 

PRC = (5,233,540 + 145,013) − (911,106 + 673,381) = 3,794,066 t 239 

The quantity of damaged tomatoes during cultivation and harvesting is 0.20 kg per kg of harvested 240 

tomatoes: for Spain, it was 1,046,708 t in 2016. Tomato skin that is separated during processing 241 

takes 0.10 kg per kg of processed tomatoes. For Spain, the quantity of tomato skin in 2016 was 242 

379,407 t. Tomato pomace takes 0.05 kg per kg of processed tomatoes, and for Spain it was 243 

189,703 tonnes in 2010. The volume of wastewater that appears in processing is 8.2 l per kilogram 244 

of processed tomatoes. For Spain, in 2016 the volume of wastewater from tomato processing was 245 

31,111,338 m3. The quantity of suspended solids from tomato processing was 227,644 t. The 246 
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quantity of tomatoes consumed in 2016 in Spain was 673,381 t, out of which 107,741 t went 247 

mouldy. 248 

3.2.3 Cereal sector 249 

The Cereal sector includes the following commodities: barley, maize, triticale, oats, rice, rye 250 

and wheat. Certain amounts of cereals are eaten or destroyed by animals (birds, rabbits, deer, 251 

wasps) and in that form cannot be used as food. Furthermore, cereals are the type of crops that 252 

generate huge amounts of AWCB during harvesting, especially straw in the case of barley, triticale, 253 

oat, wheat. Straw is mostly used as a material that provides clean area and thermal isolation for 254 

stable animals. Bran is a by-product of a multi-stage process of flour production. Husks and cobs 255 

are by-products that also often end up as burning material. Table 3 contains mass ratio of main 256 

AWCB to product ratio for the Cereal sector. 257 
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Table 3 Main AWCB produced from the Cereal sector 258 

Commodity/Cereals Harvesting/Cultivation Source 

Barley Straw to product ratio − 0.68 ÷ 1.75 kg/kg 
(FAO, 2018), (McCartney et al., 2006), (Gelaw et al., 2014), (Mali et 

al., 2017), (Weiser et al., 2014) 

Maize 

Stalks to product ratio − 0.80 ÷ 3.77 kg/kg 
(FAO, 2018), (Gelaw et al., 2014), (Barten, 2013), (Szalay et al., 

2018) 

Husk to product ratio − 0.20 ÷ 0.30 kg/kg (Barten, 2013), (Galanakis, 2015) 

Cobs to product ratio − 0.15 ÷ 0.86 kg/kg (Galanakis, 2015), (Borrelli et al., 2014), (Blandino et al., 2016) 

Triticale Straw to product ratio − 0.90 ÷ 4.00 kg/kg (FAO, 2018), (Weiser et al., 2014), (Adolfsson, 2005) 

Oat Straw to product ratio − 0.75 ÷ 2.00 kg/kg (FAO, 2018), (McCartney et al., 2006), (Weiser et al., 2014) 

Rice Straw to product ratio − 0.42 ÷ 2.15 kg/kg (FAO, 2018), (Weiser et al., 2014), (Szalay et al., 2018) 

Rye Straw to product ratio − 0.90 ÷ 2.00 kg/kg (FAO, 2018), (McCartney et al., 2006), (Weiser et al., 2014) 

Wheat Straw to product ratio − 0.50 ÷ 2.37 kg/kg (FAO, 2018), (McCartney et al., 2006), (Gelaw et al., 2014) 

Commodity/Cereals Processing Source 

Barley 
Bran to product ratio − 0.15 ÷ 0.49 kg/kg (Galanakis, 2015), (Izydorczyk et al., 2013), (Singh et al., 2015) 

Hull to product ratio − 0.14 ÷ 0.40 kg/kg (Youssef et al., 2017), (Rosentrater and Evers, 2017) 

Maize Bran to product ratio − 0.11 ÷ 0.15 kg/kg (Galanakis, 2015), (Puma et al., 2015) 

Triticale Bran to product ratio − 0.15 ÷ 0.17 kg/kg (Galanakis, 2015), (Peña, 2018) 

Oat 

Bran to product ratio − 0.15 kg/kg (Galanakis, 2015) 

Hull to product ratio − 0.25 ÷ 0.32 kg/kg 
(Rosentrater and Evers, 2017), (Decker et al., 2014), (Mahapatra and 

Yubin, 2007) 

Rice 

Bran to product ratio − 0.08 ÷ 0.12 kg/kg (Galanakis, 2015), (Puma et al., 2015), (IRRI, 2014) 

Husk to product ratio − 0.04 ÷ 0.36 kg/kg 
(FAO, 2018), (Rosentrater and Evers, 2017), (IRRI, 2014), (Zareei et 

al., 2017), (Glushankova et al., 2018) 

Rye Bran to product ratio − 0.05 ÷ 0.15 kg/kg (Galanakis, 2015), (Singh et al., 2015) 

Wheat Bran to product ratio − 0.13 ÷ 0.20 kg/kg 
(Galanakis, 2015), (Puma et al., 2015), (Chalamacharla et al., 2018), 

(Hemdane et al., 2016) 

Commodity/Cereals Consumption Source 

Barley Not applicable, as barley is not consumed directly by humans n/a 

Maize Not applicable, as maize is not consumed directly by humans n/a 

Triticale Not applicable, as triticale is not consumed directly by humans n/a 

Oat Not applicable, as oat is not consumed directly by humans n/a 

Rice Rotten rice to consumed ratio − 0.12 ÷ 0.20 kg/kg (Parfitt et al., 2010), (Conrad et al., 2018) 
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Rye Not applicable, as rye is not consumed directly by humans n/a 

Wheat Not applicable, as wheat is not consumed directly by humans n/a 

 259 
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Main AWCB during the harvesting period of cereals is straw. Also, harvesting technology 260 

affects the quantities of the straw and ability to collect and properly dispose of the straw. During the 261 

processing step, the main AWCB is bran, part of the grain that could be used in a further milling 262 

process, but in the past few years, it has become an ingredient in food consumption. For rice, as the 263 

only raw cereal directly used for food consumption, estimate shows that one quarter becomes rotten 264 

and not used. The amount of fruit defected due to harvesting and handling errors is an important 265 

factor in the AWCB calculation. Traditional method using harvest workers is slow and its 266 

efficiency depends on workers' skills. Modern methods with appropriate machinery are useful in 267 

greater agricultural areas where a larger quantity of crops and fruit are being produced. Modern 268 

methods are more expensive than the traditional ones and harvesting losses can vary depending on 269 

the quality of the machinery (Magagnotti et al., 2013). The main by-product generated in the first 270 

stage of the waste value chain of Cereal sector – straw/stalk - is usually utilised as an energy source 271 

(Muazu and Stegemann, 2015). However, some further applications of those by-products have also 272 

been studied, as a construction material (Bouasker et al., 2014), or as an adsorption material (Cao et 273 

al., 2017). Cereal bran has shown to be a very interesting source of polymer macromolecules (Lee 274 

et al., 2017) and a potential resource in the production of biodiesel (Chhabra et al., 2017). The 275 

quantity of the processed cereals is calculated for every country in each given year using 276 

expressions (I-II). An example of the calculations of barley AWCB for Slovenia in 2016 is 277 

presented below:  278 

PRD = 91,650 t 279 

IMP = 22,117 t 280 

EXP = 5,524 t 281 

PRC = (91,650 + 22,117 − 5,524) = 108,243 t 282 
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Per 1 kg of harvested barley, between 0.68 and 1.75 kg of straw is left. With an average mass of 283 

straw of 1.22 kg per kg of harvested barley, for Slovenia, it was produced 111,813 t of straw in 284 

2016. Bran that occurs in processing step takes 0.15 ÷ 0.49 kg per kg of processed barley. With the 285 

average value of 0.32 kg/kg for Slovenia, there were 34,638 t of bran. Furthermore, a hull that 286 

occurs in the processing step takes from 0.14 to 0.40 kg per kg of processed barley. The average 287 

value is 0.27 kg/kg, and for Slovenia, it was 29,226 t in 2016. 288 

3.2.4 Animal sector 289 

The last sector analysed is the Animal sector: cattle, dairy cows, pigs and chickens (broilers). 290 

Animal manure presents one of the most used by-products during the long tradition of animal 291 

farming. Before urea, the only fertiliser for crop treatment was manure. Nowadays, people still use 292 

manure as a fertiliser, but due to methane production, it should be avoided. Another source of by-293 

products that are classified as waste is the slaughterhouse remains. In slaughterhouses, huge 294 

quantities of different types of AWCB occur, which is potentially dangerous for the environment. 295 

To decrease environmental pollution, these by-products must be safely used and disposed of. 296 

Furthermore, dairy cows are farmed for milk production. After the milk is processed for different 297 

products different types of waste occur, primarily whey. Whey must be pre-treated before disposal 298 

because of environmental protection. Table 4 contains mass ratio of the main AWCB to product 299 

ratio for the Animal sector. 300 
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Table 4 Main AWCB produced from the Animal sector 301 

Commodity/Animals Farming Source 

Cattle Tonnes of manure per cattle per year – 18.25 ÷ 19.71 
(Shaffer and Walls, 2002), (Vegricht et al., 2017), (Mullo et al., 

2018) 

Dairy cow Tonnes of manure per dairy cow per year – 16.1 ÷ 18.8 (Shaffer and Walls, 2002), (Nennich et al., 2003) 

Pig Tonnes of manure per pig per year – 1.1 ÷ 1.3 (Shaffer and Walls, 2002), (Scheftelowitz and Thrän, 2016) 

Chicken Tonnes of manure per chicken per year – 0.013 ÷ 0.095 (Shaffer and Walls, 2002), (Recebli et al., 2015) 

Commodity/Animals Slaughtering/Processing Source 

Cattle 

Blood to product ratio – 0.016 ÷ 0.060 kg/kg  

(Irshad and Sharma, 2015), (Alao et al., 2017), (Ali et al., 2013), 

(Sannik et al., 2015) 

Fatty tissue to product ratio – 0.010 ÷ 0.070 kg/kg  

Hide or skin to product ratio – 0.051 ÷ 0.085 kg/kg  

Feet to product ratio –  0.019 ÷ 0.021 kg/kg  

Tail to product ratio – 0.001 ÷ 0.0025 kg/kg  

Brain to product ratio – 0.0006 ÷ 0.002 kg/kg  

Bones to product ratio – 0.08 ÷ 0.30 kg/kg 

Dairy cow Whey to produced cheese ratio – 5.10 ÷ 6.10 kg/kg (Nath et al., 2016), (Cheese, 2018) 

Pig 

Blood to product ratio − 0.02 ÷ 0.08 kg/kg 
(Irshad and Sharma, 2015), (Alao et al., 2017), (Sannik et al., 

2015), (Jayathilakan et al., 2012), (Nordberg and Edström, 2003) 

Fatty tissue to product ratio 0.013 ÷ 0.11 kg/kg  (Irshad and Sharma, 2015), (Romans et al., 2018) 

Organs to product ratio – 0.018 ÷ 0.077 kg/kg  (Irshad and Sharma, 2015), (Nordberg and Edström, 2003) 

Feet to product ratio – 0.015 ÷ 0.024 kg/kg  
(Irshad and Sharma, 2015), (Sannik et al., 2015), (Romans et al., 

2018) 

Tail to product ratio – 0.001 kg/kg  
(Irshad and Sharma, 2015), (Sannik et al., 2015), (Romans et al., 

2018) 

Hide or skin to product ratio – 0.023 ÷ 0.08 kg/kg 
(Irshad and Sharma, 2015), (Alao et al., 2017), (Romans et al., 

2018) 

Bones to product ratio – 0.085 ÷ 0.30 kg/kg (Irshad and Sharma, 2015), (Amisy, 2018) 

Chicken 

Feathers to product ratio − 0.06 ÷ 0.08 kg/kg   (Irshad and Sharma, 2015), (Alao et al., 2017), (Acda, 2016) 

Heads to product ratio – 0.025 ÷ 0.03 kg/kg   (Irshad and Sharma, 2015), (Alao et al., 2017) 

Blood to product ratio − 0.032 ÷ 0.04 kg/kg   (Irshad and Sharma, 2015), (Bah et al., 2013), (Barbut, 2015) 

Feet to product ratio – 0.035 ÷ 0.084 kg/kg   (Irshad and Sharma, 2015), (Sannik et al., 2015) 

Commodity/Animals Consumption Source 

Cattle Rotten beef to consumed beef ratio – 0.11 ÷ 0.20 kg/kg 
(Parfitt et al., 2010), (Conrad et al., 2018), (Grace, 2019), 

(Ministry of Economic Affairs, 2013) 
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Dairy cow 

Rotten milk to consumed milk ratio – 0.07 ÷ 0.20 kg/kg 
(Grace, 2019), (Ministerio de Agricultura Alimentacion y Medio 

Ambiente, 2013), (Stenmarck et al., 2016) 
Rotten butter to consumed butter ratio – 0.133 ÷ 0.20 kg/kg  

Rotten cheese to consumed cheese ratio – 0.133 ÷ 0.20 kg/kg 

Pig Rotten pork meat to consumed pork meat ratio – 0.11 ÷ 0.20 kg/kg 
(Parfitt et al., 2010), (Conrad et al., 2018), (Grace, 2019), 

(Ministry of Economic Affairs, 2013) 

Chicken Rotten chicken meat to consumed chicken meat ratio – 0.11 ÷ 0.20 kg/kg 
(Parfitt et al., 2010), (Conrad et al., 2018), (Grace, 2019), 

(Ministry of Economic Affairs, 2013) 

 302 
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Types of AWCB that appear in the Animal sector are entirely different from those in the 303 

previous sectors. The main AWCB that occurs in the farming step is manure, which has been well-304 

known to people for a significant period. As the petrochemical industry developed and still 305 

continues to grow, fertilisers have replaced manure progressively. In some rural areas, people still 306 

use manure as a natural fertiliser in the gardens and smaller fields. Cow manure can also be used in 307 

a co-composting process that can be used for biodegradation of petroleum hydrocarbons (Ahmadi et 308 

al., 2016). Chicken manure has chemical properties which have proven to be applicable to produce 309 

catalysts for the production of biodiesel from waste cooking oil (Maneerung et al., 2016). In the 310 

processing step, slaughtering remains that occur, present potential danger to the environment in 311 

case of non-adequate treatment and disposal (Um et al., 2016). As an example of the slaughterhouse 312 

by-products utilisation, slaughterhouse water has been studied as feedstock for the production of 313 

biodiesel (Hernández et al., 2016). Application of cruor (coagulated blood) in the extraction of 314 

haemoglobin and its potential use as a preservative has been studied in (Przybylski et al., 2016). In 315 

the last step, quantities of rotten meat are primarily a result of human habits and behaviour, as it 316 

was the case for all the analysed sectors. The number of processed animals is calculated for every 317 

country in each given year using expressions (I-III). An example of the calculation of the cattle 318 

AWCB for Belgium in 2016 is presented below: 319 

FARM = 2,501,350 heads 320 

SLAUG = 535,330 heads 321 

SPECMAN =18.98 t/year 322 

MAN = 47,511,875 t 323 

CON = 205,862 t 324 
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The average quantity of manure that one animal produces during a year is 18.98 t, and the total 325 

quantity of manure that the Belgian farmers produced was 47,511,875 t in 2016. The AWCB 326 

quantities that occurred in Belgian slaughterhouses were: 11,884 t of blood; 9,315 t of fatty tissue; 327 

21,841 t of skin; 6,424 t of feet; 578 t of tail; 450 t of brain and 28,265 t of bones in 2016. The 328 

quantity of the consumed cattle meat in Belgium was 205,862 t in 2016, of which 16% was 329 

calculated to go mouldy (spoiled, rotten) or 32,938 t.  330 

4. Results and discussion 331 

The data on the cumulative quantity of AWCB from all the sectors, generated from 2010 to 332 

2016, has been calculated as described in the previous sub-sections. The average quantity of AWCB 333 

per population of the country and per area of the country is shown in Figure 1 and Figure 2. 334 

4.1 The average quantity of AWCB per area in the EU28 countries  335 

Figure 1 from a to d presents the estimated quantity of the AWCB per area for selected 336 

commodities grouped in four Sectors. In the Fruit sector (Figure 1 a), the quantity of the AWCB per 337 

area below 1 t/km2 has been estimated in countries such as Sweden, Finland, Latvia, Estonia, 338 

Ireland and Lithuania. Such a low value is the result of low agricultural activities regarding the 339 

production of analysed fruit commodities due to inappropriate climate conditions and a large 340 

country area. Smaller countries with a high level of industrialisation like the Netherlands, Belgium 341 

and Austria have shown the yields of the fruits AWCB between 4 t/km2 and 12 t/km2. Since 342 

analysed commodities are mostly citrus fruit, it is expected that the Mediterranean countries show 343 

the highest quantities of the fruits AWCB. Therefore, Italy (ca. 40 t/km2) and Greece (50 t/km2) are 344 

the most dominant countries in the EU considering the technical potential of the fruits AWCB per 345 

km2.   346 
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Figure 1 a to d. The average quantity of AWCB from all sectors per area in the period 2010–2016. Fruits AWCB (a), Vegetable AWCB (b), 

Cereal AWCB (c), Animal AWCB (d) 

a. Fruit AWCB per area  b. Vegetable AWCB per area  

c. Cereal AWCB per area  d. Animal AWCB per area  
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The highest quantities of AWCB per area for the Vegetable sector (Figure 1 b) have been 347 

estimated for the Netherlands at 2,600 t/km2 and for Belgium at 2,525 t/km2. Since both countries 348 

have highly developed vegetable production and low land area, it brings them to the top. Other 349 

countries with more than 300 t of the vegetable AWCB per km2 are the UK, Germany and 350 

Denmark. The lowest quantity of the vegetable AWCB has been estimated for Sweden (ca. 30 351 

t/km2), Latvia (ca. 23 t/km2) and Finland (ca. 17 t/km2), which is the result of low agricultural 352 

activities and high land area. In this analysis, highly developed European countries with high 353 

agricultural activities have shown the greatest values of the technical potential of vegetable AWCB.  354 

The highest quantities of AWCB per area for the Cereal sector (Figure 1 c) have been 355 

estimated in Hungary (ca. 360 t/km2), Denmark (ca. 330 t/km2), Belgium (ca. 225 t/km2) and 356 

Germany (ca. 220 t/km2). The reason for such results lies in the fact that these countries have 357 

strongly developed agriculture sector regarding cereals production and lower land area, except for 358 

Germany. Romania and Bulgaria have also shown a high level of cereal production with the 359 

generated AWCB in Cereal sector slightly below 200 t/km2. Again, the countries located in the 360 

north of Europe, Finland and Sweden, have shown the lowest AWCB quantities, below 20 t/km2.  361 

Countries with high available land area and favourable climate conditions for cereals production 362 

and high population density have shown to be dominant in the Cereal sector.  363 

For the Animal sector (Figure 1 d), the highest AWCB production has been estimated for the 364 

Benelux countries: the Netherlands (ca. 2200 t/km2), Belgium (ca. 1500 t/km2) and Luxembourg 365 

(ca. 1100 t/km2). Denmark and Ireland generate between 1000 ÷ 1200 t/km2 of the animal AWCB. 366 

This data points to the fact that high level of farming activities and animal processing is in the 367 

highly populated countries of Western Europe. Germany and France have also shown relatively 368 

high quantities of the animal AWCB with the average values of ca. 450 and 700 t/km2, respectively. 369 

Countries of Central and Eastern Europe like Poland, Czech Republic, Slovakia, Slovenia, Croatia 370 
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and Hungary have shown the yield of the animal AWCB between 150 ÷ 300 t/km2, while the lowest 371 

quantities of the animal AWCB have been estimated for Northern European countries Sweden and 372 

Finland with the yield of around 50 t/km2.  373 

4.2 The average quantity of AWCB per area in the EU28 countries  374 

Figure 2 from a to d presents the estimated quantity of AWCB per capita for selected 375 

commodities grouped in four Sectors. In the Fruit sector (Figure 2 a), Greece, Italy and Spain have 376 

shown the highest quantity of the AWCB per capita and year, 600 kg, 200 kg and 130 kg. A similar 377 

trend has been reported for the estimated yield of the fruit AWCB per area. This point to the fact 378 

that the highest potential of the fruit AWCB is presented in the Southern European countries. The 379 

lowest quantity of the generated AWCB for the Fruit sector (below 10 kg per capita and year) has 380 

been estimated for Northern and Western European countries (Denmark, Finland, Sweden, Latvia, 381 

Estonia, Lithuania, Germany, the UK and Ireland).  It is important to emphasize that selected Fruit 382 

commodities, except apple, are dominantly cultivated in Mediterranean climate conditions.  383 

The highest quantity of AWCB per capita and per year for the Vegetable sector (Figure 2 b) 384 

has been estimated at around 7.0 t for the Netherlands and Belgium. Both countries have shown the 385 

highest yield of the vegetable AWCB per area, as well. This data indicates that there is high 386 

potential in the use of the residues of vegetable production, processing and consumption in those 387 

countries. Denmark follows the Benelux countries with the estimated quantities of the vegetable 388 

AWCB of ca. 3.7 t per capita. Countries of Central and Eastern Europe in this analysis have shown 389 

greater quantities of the vegetable AWCB, such as Poland, Estonia, Lithuania and Romania. This 390 

result is probably related to the low population density in the Baltic countries and high agricultural 391 

activities in Poland and Romania. The lowest yield of the vegetable AWCB per capita has been 392 

estimated in Slovakia (ca. 600 kg) and the Czech Republic (ca. 850 kg).   393 
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Figure 2 a to d. The average quantity of AWCB from all sectors per capita in the period 2010-2016. Fruit AWCB (a), Vegetable AWCB 

(b), Cereal AWCB (c), Animal AWCB (d) 

a. Fruits AWCB per capita  b. Vegetables AWCB per capita 

c. Cereals AWCB per capita  d. Animals AWCB per capita  
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In the Cereal sector (Figure 2 c), the highest quantity of AWCB per capita and per year is 394 

estimated for Hungary, with around 3.5 t. Denmark is second with around 2.5 t per capita and year, 395 

followed by Romania and Bulgaria, each with 2.3 t of the cereal AWCB. Central and Eastern 396 

European countries have favourable climate conditions for the growth of cereals and therefore high 397 

technical potential for the cereal AWCB to be used. Northern European countries on average have 398 

shown the AWCB yield of 1.0 t per capita. The lowest production of the cereal AWCB per capita 399 

and per year is estimated for Malta (100 kg).  400 

In the Animal sector (Figure 2 d), the results have shown that only six countries produce less 401 

than 2.0 t of the animal AWCB per capita (Bulgaria, Greece, Italy, Hungary, Malta and Slovakia). 402 

The Czech Republic, Spain, Croatia, Cyprus, Portugal, Romania, Germany, Sweden and the UK 403 

belong to a group of countries that produce between 2.0 and 3.0 t of the animal AWCB per capita 404 

per year. Other countries produce much bigger quantities of the animal AWCB, whereas Belgium, 405 

France, Netherlands and Denmark have shown on average between 4.0 and 7.0 t of the animal 406 

AWCB. The highest producer of the animal AWCB is Ireland, where almost 20 t of the animal 407 

AWCB is produced per capita in a year. In general, highly-developed countries of Western Europe 408 

generate the largest quantities of animal AWCB.   409 
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5. Conclusions and future research 410 

This study gives an overview of the technical potential of agricultural co- and by- products 411 

generated from the top EU28 commodities in the agricultural value chain.  The results presented in 412 

this study should be carefully analysed. The commodities have been selected due to their usage rate 413 

in the EU28. Even though they have been sorted into four different sectors, the estimated quantities 414 

of the AWCB do not represent the real situation in these sectors. The quantities of the AWCB have 415 

been calculated for every EU28 country, but their distribution over the country has not been shown, 416 

such as on the NUTS3 level. In total, this study has shown that the dispersion of the AWCB 417 

quantities is the result of land activities, climate conditions and human eating habits (consumption 418 

of goods). Countries with less available land areas, a significant number of industrial zones and 419 

high population density were the biggest producers of the AWCB in the Animal sector – Belgium, 420 

France, Germany, Ireland and the Netherlands. Those countries have also shown a respective yield 421 

of AWCB generated in the Vegetable sector. Since the Animal and Vegetable sectors are highly 422 

connected due to the transfer of vegetable residues to animal feeding, the estimated distribution of 423 

their AWCB was expected. Therefore, Western European countries show a high potential of the use 424 

of co- and by- products generated in animal farming and vegetable cultivation activities. On the 425 

other hand, South European countries, with lots of land areas and mild weather conditions were 426 

shown to be more dominant in the quantities of the generated fruit AWCB. Therefore, the use of 427 

citrus fruit co- and by- products in that area should be taken for more detailed observation in further 428 

studies. The Cereal sector has shown the potential of AWCB in the countries of Central and Eastern 429 

Europe. This analysis has shown that the highest yield of the cereal AWCB was generated in the 430 

countries located in the Pannonian Basin and in France and Germany.  431 
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Future research should put the focus on the combined approach of converting the studied 432 

AWCB in biorefineries. The first stage of the combined approach should include experimental 433 

research on the production of value-added bio-applications like enzymes, biofuels, biopolymers, 434 

pigments and bioactive compounds from the studied AWCB. The second stage is GIS mapping of 435 

AWCB at national/regional level that could give a more detailed spatial distribution of AWCB. GIS 436 

mapping will be used to find an optimum transport route for AWCB utilisation in the current 437 

biorefineries, or in the planning of new biorefineries and local/regional intermediate processing 438 

facilities. Finally, the study on the techno-economic analysis of the combined approach will be used 439 

to valorise the products and the feasibility of AWCB utilisation.  440 

In many cases, the production of value-added products from specific AWCB may not be 441 

economically feasible mainly because of the low market price of products, low quantities and 442 

seasonality of AWCB, high transportation costs and water content of AWCB. In order to overcome 443 

these problems, specific types of AWCB should be treated on-site by the same producing industry 444 

in order to produce intermediate products (such as bio-oil, biogas, bio-juice, etc.) that can be easily 445 

stored and transported to the biorefineries which production provides a large-volume product to 446 

achieve economies of scale.       447 
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