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In this paper a new method for burned mass fraction – pressure relation, x-p rela-
tion, for two-zone model combustion calculation is developed. The main applica-
tion of the two-zone model is obtaining laminar burning velocity, SL, by using a
pressure history from a closed vessel combustion experiment. The linear x-p rela-
tion by Lewis and von Elbe is still widely used. For linear x-p relation, the end pres-
sure is necessary as input data for the description of the combustion process. In this
paper a new x-p relation is presented on the basis of mass and energy conservation
during the combustion. In order to correctly represent pressure evolution, the
model proposed in this paper needs several input parameters. They were obtained
from different sources, like the PREMIX software (with GRIMECH 3.0 mechanism)
and GASEQ software, as well as thermodynamic tables. The error analysis is pre-
sented in regard to the input parameters. The proposed model is validated against
the experiment by Dahoe and Goey, and compared with linear x-p relation from
Lewis and von Elbe. The proposed two zone model shows sufficient accuracy when
describing the combustion process in a closed vessel without knowing the end pres-
sure in advance, i. e. both peak pressure and combustion rates can be sufficiently
correctly captured.
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Introduction

Combustion modeling has become significant with the growing concern for decreas-

ing fossil fuels reserves and preserving our environment. Important aspects of the modeling are

to give information about combustion efficiency, green house gases emission, and pollutant re-

duction, as well as insight into combustion of alternative fuels. The most often researched gas

fuels are methane [1, 2], hydrogen [3], and their mixtures [4-9]. A very important property of a

fuel, which has been investigated, is laminar burning velocity, often denoted as SL. One of the

methods, commonly used for modeling combustion of perfectly premixed gas fuels, is the zonal

approach. In the zonal approach, the domain of the combustion vessel is divided into zones, mu-

tually connected with a mathematical function, based on the mass and energy conservation laws.
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The simplest is the two-zonal model, where the combustion vessel is divided into

burned zone (containing combustion products) and unburned zone (containing fresh mixture),

separated with infinitely thin flame front. Generally, pressure-time evolution in a closed vessel

is a function of burnt mass fraction x and the laminar burning velocity SL. Mathematically, it can

be expressed as an ordinary differential equation, containing laminar burning velocity SL as a

parameter, and x as a variable. In order to solve it, the functional dependence between burned

mass fraction and pressure, x-p relation, must be known.

Literature review

The first zonal model was developed by Levis et al. [10]. For the pressure raise func-

tion, which links the burnt mass fraction x and instantaneous pressure p, a linear relation was

adopted. Bradley et al. [11] published a review paper in which they compared the linear x-p rela-

tion to the numerical multi zone model. The results appeared to be very close to the linear rela-

tion. Stone et al. [12] compared multi zone x-p relation with the linear one and concluded that

observed difference in results is not exceeding more than 1.6%. Dahoe et al. [13], calculated

laminar burning velocities for methane-air mixtures by using the linear x-p relation. In their

work [14], Lujten et al. argued that Dahoe results for laminar burning velocities of methane-air

mixtures are 5-8% larger due to the use of linear x-p relation. On the other hand, in their recent

work, Farrell et al. [15] determined laminar burning velocities for 45 hydro-carbonates. In their

research two methods were used: pressure history and schlieren. For the pressure history

method non-linear x-p relation was used. The measurements showed that velocities obtained by

pressure history method were systematically ~10% higher than results from schlieren method.

In both cases, for linear and non-linear x-p relation, the end pressure is necessary for

the description of the combustion process, namely for determining laminar burning velocity. In

this paper a new x-p relation is presented on the basis of mass and energy conservation during

the combustion. It will be shown that by using this new relation, it is possible to correctly de-

scribe the combustion process in a closed vessel without knowing the end pressure in advance,

i. e. both peak pressure and combustion rates can be obtained. In order to correctly represent

this, the model proposed in this paper needs several input parameters. They were obtained from

different sources, like the PREMIX software (with GRIMECH 3.0 mechanism) and GASEQ

software covering combustion of methane flames, as well as thermodynamic tables. Enetta et al.

showed that standard detailed scheme GRIMECH 3.0 can correctly predict pollutant emissions

in an IC engine [16]. The proposed model is validated against the experiment by Dahoe et al.

[13]. In this experiment a spherical vessel, with radius of 168 mm, was used. The vessel was

filled with a stoichiometric mixture of methane and air at 1 bar and 298 K. Mixture was ignited

at the center of the vessel. This experiment is very suitable due to the fact that with spherical ge-

ometry intensive cooling of the flame on the walls of the vessel can be avoided. On the other

hand, the vessel is sufficiently small so we can exclude buoyant effects. This simplifies the prob-

lem, since the lack of heat loss in the proposed method becomes less significant and adiabatic

conditions during the combustion can be assumed.

In practical applications, zonal approach is used for simulation of different phenomena

occuring in internal combustion engines, like homogeneous charge compression ignition [17],

NOx formation [18] or knock [19]. Khalilarya et al. [20] divided combustion chamber into three

zones: cylinder head, cylinder wall, and piston head for calculating the rate of heat loss to the en-

gine coolant.
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First, mathematical description of pressure raise function modeling is presented. This

is followed by an error analysis of the presented model. The analysis shows that the maximum

error of the model is 1.56%. In the end, the results of both models, based on linear x-p relation

and new method, are compared with the experiment.

Pressure raise function modelling

Methgalchy et al., published a two-zone model [21] in which energy and mass conser-

vation equation are simultaneously solved. In their later work [22] an analysis of possible dis-

turbing effects was discussed. They concluded that effects like wall heat transfer, burnt gas tem-

perature gradient, buoyant rise for small vessels, charge stratification, flame wrinkling, ignition

energy input, and radiative heat loss had limited effects on the process in the vessel. Based upon

this, in a closed vessel combustion bomb analysis, the following assumptions are introduced:

(1) fresh mixture is perfectly premixed and no levels of turbulence are present,

(2) during the combustion, pressure remains spatially uniform in the vessel,

(3) in each zone of the two zones temperature is equally distributed,

(4) there is no heat exchange between unburned and burned zone,

(5) overall mass and mean density in the vessel is constant during the combustion,

(6) the vessel is adiabatically insulated,

(7) buoyancy is negligible,

(8) flame front is spherically shaped and infinitely thin,

(9) flame stretching effect is neglectable,

(10) fresh mixture is compressed adiabatically during the combustion process, and

(11) by the end of combustion there is still a small unburned fraction of fresh mixture remaining

in the system.

The model which is presented in this paper requires the introduction of combustion ef-

ficiency parameter h which describes the last assumption. This parameter has a role to limit

combustion to the some predefined limit which is less than one. This limit is necessary, since in

real applications some of the fuel remains unburned due to molecular dissociation and chemical

kinetics. The main part of the method is pressure raise function. This function describes pres-

sure-time evolution. In addition to that, several features are also described: laminar burning ve-

locity, and ignition.

Pressure raise function

Pressure raise function is an essential part of the methodology, since it relates pressure

change with time. Based on the above assumptions the differential equation for the pressure can

be derived:
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Equation (1) is widespread in the literature, and its derivation is not given here [13, 14,

23]. The detailed derivation could be found in [14]. Progress variable used in eq. (1) is the

burned mass fraction x. In literature one can find linear, eq. (2), and non-linear, eq. (3), formula-

tions for x [3, 14]:

x
p p

p p
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Because of its simplicity and small error, linear function x(p) (2) is in wide use. Since

peak pressure is not known in advance, eq. (1) alone is not sufficient to describe pressure-time

evolution during the combustion process. This is why relation between pressure and progress

variable is found. By deriving eq. (2) we obtain:

d

d
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For easier differencing eq. (3), the equation will be written in a more concise form:
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Differencing eq. (5) yields:

d

d

f

f

f fin

end in

in in

e

x p p p

p p p

p p p p p

pp
�

� �

�
�

� �( )

( )

( )[ ( )]

[ nd in f� p p( )]2
(7)

with

p p
p

p
in

u b

u in

f
u

� �
� �

�
��

�

�
��

�

( )
k k

k

k

1

(8)

Relation between p and x can also be found from the energy balance:

dQ = dmqYfuhfu (9)

On the other hand, releasing the energy of amount dQ, mean temperature in the vessel

rises for dT , so it could be written:

dQ mC T� d (10)

By equalizing eqs. (9) and (10), and adopting that dx = dm/m, one can obtain the fol-

lowing relation:

d dfu fuxqY C Th � (11)

By assuming that the mixture in the vessel is an ideal gas,
p

R T
r

� (12)

and differencing the eq. (12) one obtains:
d

d d
p

R T R T
r

� � (13)

If one takes into consideration the fact that mean gas constant R is equal to

R R x R x� � �u b( )1 , and substituting this into (13), a differential equation yields:
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Inserting dT from eq. (11), into eq. (12) yields,
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Finally, in order to obtain the pressure raise function, when eq. (13) is rearranged, and

divided with dx, a differential equation relating pressure and mass burnt fraction x can be ob-

tained:
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and eq. (1) becomes finally:
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Simulation error analysis

In the following section an error analysis of the proposed model is presented. Error

analysis is estimated on change in the output of the model with regards to the variation/deviation

of the model input parameters about a mean within reasonable boundaries.

Pressure-raise function deviation analysis

For easier analysis eq. (1) can be written as:

d
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Term dp/dx is a pressure raise function, and has an influence on the peak pressure

value, while laminar burning velocities, SL, affect combustion time, and therefore the slope of

the function. In the case of stoichiometric mixture of air and methane, gas constants of un-

burned, and burned mixture are approximately equal, Ru � Rb. Since the second term of eq. (16)

on the right-hand side in the majority of cases is of lower order of magnitude than others, it could

be neglected. The total differential of the eq. (16) is:
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where p' is due to conciseness:
� �p

p

x

d

d
(20)

Because the mean fluid density and fuel share Yfu are constants which can easily and ac-

curately be obtained, their variance will be assumed to be zero. Variance of lower heating value

of the fuel, fuel efficiency value, heat capacity, respectively, and gas constant are sq,sh, sC, sR

respectively. Applying these values into (19), one obtains:

s
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s
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s
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Heat value data deviation

In tab. 1, an error analysis for

the fuel heating value is presented.

As it is shown in the table, that

value deviation does not exceed

0.21 and 0.67% in this case.

Deviation of heat capacity

In the case of the ideal stoichiometric combustion of methane at pressure of 1bar and

temperature of 298 K, the equation is:

CH4 + 2(O2 + 3.716N2) � CO2 + 2H2O + 7.432N2 (22)

During the combustion process, there is a variety of chemical species on both reactants

and products side. Combustion equation, which was obtained by PREMIX with GRIMECH 3.0

mechanism, and assumes constant pressure combustion, taking into account the most relevant

species, has the following form:

CH O N CO CO H4 2 2 2 21992 7513 0839 0145 0064 0012� � � � � �. . . . . . 9

00866 1886 7 439 005242 2 2

H

O H O N NO

�

� � � �. . . . (23)

with combustion temperature of 2300 K.

Similarly, by GASEQ software, for adiabatic flame and constant volume combustion,

the following results are obtained:

CH O N CO CO H4 2 2 2 22000 7526 0817 0179 00655 001� � � � � �. . . . . . 02

00785 18675 73919 005242 2 2

H

O H O N NO

�

� � � �. . . . (24)

with combustion temperature of 2587 K.

All results in the paper representing constant pressure combustion were obtained with

PREMIX, and all results representing constant volume combustion were obtained with GASEQ.

From tab. 2, 3, and 4 it

could be concluded that

ideal and real combustion

products heat capacity,

and gas constants do not

vary much with tempera-

ture and difference in the

composition. On the other

hand, mean heat capacity,

which is by definition:

C
q

�
D

DT
(25)

depends on released heat,

and temperature differ-

ences. The amount of re-

leased energy has bigger
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Table 1. Methane lower and higher heating value

q1
[24] [J] q2

[25] [J] q3
[26] [J] qm [J] s [%]

LHV 49853158 49812991 50014961 49893703 0.2143

HHV 55384386 56046628 55417030 55616015 0.6712

Table 2. GASEQ results

GASEQ
V = const.

pend [bar] T [K] hfu [–] Ru [Jkg–1K–1] Rb [Jkg–1K–1]

9.04 2587 0.9538 301 303.1

Table 3. Constant pressure specific heat capacity of the
combustion products

Ideal combustion Real combustion

p = const. V = const. p = const. V = const.

T [K] �2300 ����� �2300 �����

Cpb [Jkg–1K–1] 1521 1539 1530 1532



influence on mixture heat capacity, as it

could be seen from eq. (25) and tab. 5. Heat

capacity on the beginning of the combus-

tion is equal to the fresh mixture constant

pressure heat capacity, and on the end of

combustion, to the burned gases constant

volume heat capacity. For the simplicity of

the model, heat capacity function will be as-

sumed as a second order polynomial:

C ax bx c� � �2 (26)

The conditions for deter-

mining value of constants a, b,

and c are:

(1) at initial moment when x = 0:

C C� pu (27)

(2) at the end of combustion

when x = 1:

C C� vb (28)

(3) and mid value during the

combustion process:

C C x
q

T
ave d�

�
��

1

1 0 0

1
D

D
(29)

The error was estimated as a

truncation error of MacLaurin’s

series. If we take only first three

terms from MacLaurin series

and by knowing that x ranges

from zero to one, the truncation error limits are:

eC = O(x – 0)3
� O(1 – 0)3

� 10 (30)

For the heat capacity deviation, it was adopted a value of sC = 10 Jkg–1K–1, based on

eq. (28).

Combustion efficiency deviation

As it has been emphasized in introduction, in the calculation of the pressure evolution

combustion efficiency hfu has a very big influence. In order to determine combustion efficiency,

from the the maximum possible released energy (LHV of the fuel) the energy “trapped” in un-

burned combustible reactants is subtracted (hydrogen, and carbon-monoxide LHV values):

hfu

fu fu CO CO H H

fu fu

LHV LHV LHV

LHV

2 2�
� �m m m

m
(31)
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Table 4 Mean heat capacity of the
mixture during the combustion

Ideal combustion Real combustion

Dq [J] 2744 2595

DT [K] ~2300 ~2300

C [Jkg–1K–1] 1991 1131

Table 5. PREMIX results for constant pressure
combustion of stoichiometric mixture of methane and air

PREMIX
p = const.

p [bar] Ti [K] Tb [K] sfn [–] Ru [Jkg–1K–1] Rb [Jkg–1K–1]

1 298 2162 0.9287 302 305

2 363 2272 0.9523 301 304

3 408 2304 0.9557 301 303

5 432 2349 0.9526 301 303

10 575 2420 0.9400 301 304

Mean value – 2301 0.9459 301.2 303.8

s 95.7 0.0113 0.447 0.837



Assuming that constant volume combustion chamber can be represented as of finite

number of constant pressure combustion chamber, an analysis of constant volume combustion

can be performed with PREMIX. Table 5 presents results for the h coefficient obtained from

PREMIX with GRIMECH 3.0 mechanism. Coefficients in tab. 5 are for pressures and tempera-

tures of an adiabatic compression of stoichiometric mixture of methane and air. Mean value of

h, and its standard deviation, together with gas constants, their mean value and standard devia-

tion are also presented in the tab. 5.

Ignition modeling

Experimental research [9, 27, 28] confirmed that laminar flame speed is independent

from ignition energy, when flame radius is greater than 5 mm. It can be calculated easily that the

ratio of energy brought into the vessel by ignition (which is usually about 100 mJ [2, 6,13]), and

released by combustion when flame radius reaches 5 mm, is less than 10%. Also, it was noted

that until flame reaches radius of 25 mm the pressure raise is insignificant [6], and the condition

in a vessel can be treated as an isobaric. Considering this, and also the fact that constant volume

combustion of a stoichiometric methane-air mixture, reactants at 1 bar, and 298 K, combustion

temperature is approximately 2600 K. From eq. (32), knowing the flame radius of 5 mm when

flame front was formed, the value x can be calculated, and it amounts 2.62E-05. Also, from eq.

(33) the temperature of unburned mixture was calculated, and it values 297.94 K:

r R v x
p

p

T

T
f v

in u

in

� � �1 13 ( ) (32)

R T

p
x

R T

p
x

R T

p

u in b b u u� � �( )1 (33)

Results and discussion

Based on the assumptions introduced in the third chapter, it is possible to do an error

analysis of the zonal model for the stoichiometric methane-air combustion. Section is divided

into 3 parts: pressure raise function error, numerical integration error of the eq. (17), and com-

parisons of two zonal models with linear and modified pressure raise function, with experimen-

tal results from Dahoe et al. [4].

Pressure raise function deviation

By substituting required values,

sq, sh, sC, sR in eq. (26), pressure

raise function deviation was calcu-

lated. Heat capacity value C, is not a

constant, and according to (26), it is a

function of x, and hence also a func-

tion of time. fig. 1 presents a compari-

son of simulation results, a two-zone

model with a linear pressure-raise

function, and a two-zone model with
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Figure 1. Comparison of dp/dx models and modified
model´s standard deviation [%]



new pressure-raise function and experiment.

The deviation of the model is presented on the

right axis.

Error of the numerical integration

For the simulation, laminar burning veloc-

ity SL was adopted as:

S

S

T

T

p

p

L

L0

�
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��

�

�
��

�

�
��

�

�
��

0 0

1 2b b
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where, values for SL0, b1, and b2, were 0.4118

m/s, 1.89, and –0.45912, respectively [13].

Since numerical integration of eqs. (16) and

(17) was done, it is necessary to consider the

impact of the size of time step Dt on the result of

simulation. For the integration Euler scheme

was used, in which the magnitude of the errors

arising from the method is proportional to Dt.

Results of the numerical integration are pre-

sented in fig. 2 and tab. 6. Time step was varied

from 0.005 to 10 ms. The ending criteria were

the step, when x reaches, or overlaps the value

of 1. From the results, it could be concluded,

that substantial deviations occur when the time

step is larger than 1 ms, which is 1.008% of the

observed combustion time interval. As integra-

tion was done by Euler method for this time

step, when Dt =1 ms, the numerical error of in-

tegration was of the order of magnitude of 1%.

The error of integration for the time step of 1 ms

was 2.680% for the peak pressure value, and

7.800% for combustion time. For the finest time

step it was of 2.05 and 2.24%, for 0.005 and

0.05 ms, respectively . The results for all time

steps are presented in tab. 6.

Comparison of the results

From the graphics in fig. 3, it can be seen

that the peak pressure, obtained by the modified

model, is slightly higher than the experimental

value. Deviation, which is obtained in this way

is acceptable, and is 1.6%, which is equal to the

predicted one (fig. 1). The linear model, in the

case of peak pressure, does not show any devia-
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Figure 2. Results of numerical integration of the
expression (1) for different magnitude of time
steps from 0.005 to 10 ms [13]

Table 6. Results of numerical integration of
pressure equation, depending on the time step

Dt [ms] tcomb [ms] pmax. [bar] xend e � [%]

0.005 94.085 8.930 1.000 0.005

0.05 94.300 8.922 1.001 0.054

0.5 97.500 8.967 1.001 0.544

1 99.000 8.535 1.006 1.088

2.5 105.000 8.096 1.001 2.721

5 115 7.585 1.014 5.4427

10 140 8.156 1.289 10.8854

Figure 3. Comparison of the experiment with
modified pressure raise function model, and
linear pressure raise function model [13]



tion, because the peak pressure value is an

input value in the eq. (2). As for the time

of combustion, the value which was ob-

tained by modified relation is higher for

13.45 ms or 14.64%. It should be noted

that integration of expression (1) was

done with time steps of Dt = 0.005 ms, and

in the case of a modified relation was used

Euler's method, and for the linear model

fourth order Runge-Kutta. The main re-

sults are presented in tab. 7.

Here should be noted that the experimental results for combustion also input uncer-

tainty. According to [13], results for stoichiometric mixture of methane and air combustion in a

20 l vessel, can vary from 8.4 to 8.78 bar.

Conclusions

This paper presents a new method for modeling the pressure raise function, dp/dx.

When compared to the experiment (performed by Dahoe et al. [13]), the new method proposed

here shows sufficiently accurate results in pressure evolution prediction, namely peak pressure,

combustion rate and time till complete combustion. In comparison with the two zonal model

with linear pressure raise function, combustion rate was far better predicted by the two zone

model with modified pressure raise function. Based on the presented results, a modified dp/dx

relation represents an effective tool in constant volume combustion calculation.
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Table 7. Comparison of peak pressure values and
combustion time of experiment and models

pend [bar] tcomb [ms] ep [%] et [%]

Experiment 8.78 91.837 – –

Linear model 8.78 105.29 – 14.64

Modified
model

8.92 94.085 1.59 2.45

Nomenclature

C – mean specific heat capacity, [Jkg–1K–1]
Cpb – constant pressure heat capacity of burned

– mixture, [Jkg–1K–1]
Cpu – constant pressure heat capacity of

fresh mixture, [Jkg–1K–1]
Cvb – constant volume heat capacity of

burned mixture, [Jkg–1K–1]
m – mass, [kg]
p – pressure, [Pa]
pend – end pressure, [Pa]
pin – initial pressure, [Pa]
Q – released heat, [J]
q – heat value of fuel, [Jkg–1]

R – mean gas constant, [Jkg–1K–1]
Rb – burned mixture gas constant, [Jkg–1K–1]
Ru – fresh mixture gas constant, [Jkg–1K–1]

Rv – equivalent radius of an observed vessel, [m]
SL – laminar burning velocity, [ms–1]
SL0

– laminar burning velocity at referent
– conditions, [ms–1]

T – temperature, [K]
Tin – initial temperature, [K]
Tu – fresh mixture temperature, [K]
t – time, [ms]
tcomb – combustion time, [ms–1]
x – burned mass fraction, [–]
Yfu – mass share of the fuel in air – fuel mixture, [–]

Greek letters

b1 – temperature exponent, [–]

b2 – pressure exponent, [–]

ep – pressure estimation error, [Pa]
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