

OPTIMISING THE INTEGRATION OF HYDROGEN USAGE WITH INTERMITTENT ENERGY SOURCES

Neven Duic Luís Manuel Alves Maria da Graça Carvalho

Instituto Superior Técnico, Technical University of Lisbon Dept. Mechanical Engineering Av. Rovisco Pais, 1049-001 Lisbon, PORTUGAL <u>http://www.lasef.ist.utl.pt/sustenergy/index.htm</u>

OBJECTIVES

- To show a model optimising hydrogen storage integration with renewable energy sources
- To show a way to increase RES penetration
- To show a way for increasing security of energy supply for islands
- To show a path for sustainable development of islands

- Isolation
- Small local markets
- Higher costs of energy, transport and communication
- No economies of scale
- Security of supply problems
- High strain on energy, water, waste, environment and social systems

- Renewable sources better economic viability due to depending less on size and fuel handling infrastrucure
- Usually good renewable resources
- Renewable energy appeal to high quality tourists

H₂RES MODEL

H₂RES MODEL

Energy planning tool

- Small and medium power systems
- >Higher penetration of renewables
- Integration of energy storage
- Electricity dump: desalination or other
- Need to use time series instead of usual approach (LDC, Weibull)

H₂RES MODULES

• Hourly wind velocity data obtained • Adjusted to the hub height $v_z = v_{10} \left(\frac{z}{10}\right)^{0.14}$ • Converted into hourly potential output

Example for VESTAS wind turbines, as installed on Porto Santo, Madeira, Portugal

- Hourly total radiation on horizontal surface obtained
- Adjusted to the inclined surface (RETSCREEN)
- Converted into hourly potential output by efficiency provided from supplier

Hourly load of power system obtained Limit to renewable intake Excess renewable rejected

H₂RES – STORAGE MODULE – FILLING

 Excess renewable taken to electrolyser
 If less than electrolyser capacity
 If hydrogen tank not full
 The rest rejected – taken to desalination or other electricity dump

H2RES – STORAGE MODULE – H2 USED

During peak hours (various definition) fuel cell is turned on using hydrogen stored until tank is empy

H₂RES MODEL

Electricity delivered to power system

PORTO SANTO

• Population: 5000 in winter \Rightarrow 20000 in summer

PORTO SANTO

Power system (2000): 13.8 MW thermal + 1.1 MW wind 24.1 GWh thermal + 1.1 GWh wind 5.6 MW peak, 2 MW base, 20% growth

PEAK SHAVING SCENARIA

- Scenaria
 - 1. Wind only
 - 2. Wind as installed + solar
- Up to 30% renewable at any time can be taken by power system
- Excess to electrolyser
- Fuel cell for peak shaving, optimised at 1.8% of electricity delivered

PEAK SHAVING SCENARIA

PEAK SHAVING SCENARIA

	peak serving time
Wind only	53%
Wind&solar	62%

100% RENEWABLE SCENARIA

- Scenaria
 - 1. Wind only
 - 2. Wind + solar
- Up to 100% renewable at any time can be taken by power system
- Excess to eletrolyser + desalination
- Fuel cell to cover load when no renewable available
- Optimised on no Diesel

100% RENEWABLE SCENARIA

100% RENEWABLE SCENARIA

	fuel cell serving time
Wind only	37%
Wind&solar	41%

H₂RES CONCLUSIONS

- For peak shaving wind&solar takes smaller storage and electrolyser
- For 100% renewable better wind only

CONCLUSIONS

- A model for optimising integration of hydrogen storage with intermittent renewable energy sources (wind and solar) was devised
- Storage module can be upgraded to work with batteries or pump storage
- The model was applied to Porto Santo
- The results were intriguing

PORTO SANTO Madeira, Portugal